首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Adsorption of Dye Molecules on Single Crystalline Semiconductor Surfaces: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study
【24h】

Adsorption of Dye Molecules on Single Crystalline Semiconductor Surfaces: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study

机译:染料分子在单晶半导体表面上的吸附:电化学壳隔离的纳米粒子增强拉曼光谱研究。

获取原文
获取原文并翻译 | 示例
       

摘要

Adsorption of dye molecules on semiconductor surfaces dictates the interaction at and thus the electron transfer across the interface, which is a crucial issue in dyesensitized solar cells (DSSCs). However, despite that surface enhanced Raman spectroscopy (SERS) has-been employed to study the interface, information obtained so far is gathered from surfaces of irregularly arranged nanoparticles, which places complexities for precise attribution of adsorption configuration of dye molecules. Herein, we employ single crystalline rutile TiO2(110) for Raman spectroscopic investigation of TiO2 dye interfaces under electrochemical control by utilizing the enhancement of Au@SiO2, core shell nanoparticles. FD-TD simulation is performed to evaluate the localized electromagnetic field (EM) created by the core shell nanoparticles while Mott-Schottky measurements are used to determine the band structure of the semiconductor electrode. Comparative investigations are carried out on nanoporous P25 TiO2 electrodes. The potential-dependent Raman shift of v(N=C=S) suggests that the binding of the SCN group of N719 to the TiO2 surface is the intrinsic nature of the TiO2-N719 interaction, after removing the possible bonding complexity by surface roughness. Nevertheless, hydrogen bonding between COOH and the TiO2 appears to be more favorable on the atomic flat rutile TiO2(110) surface than on the surface of nanoporous P25 nanoparticle as revealed by the stronger Raman shift of v(C=O) (COOH) on the former. Electrochemical SERS (EC-SERS) results show that photoinduced charge transfer (PICT) occurs for both the P25 and rutile(110) TiO2 surfaces, and the potential to achieve PICT resonance depends on the band structure of the semiconductor. Our work demonstrates that EC-SERS can be applied to study the single crystalline semiconductor molecule interfaces using core shell based surface plasmonic resonance (SPR) enhancement strategy, which would promote fundamental investigations on interfaces of photovoltaic and photocatalytic systems.
机译:染料分子在半导体表面上的吸附决定了界面处的相互作用,因此也决定了电子在界面上的转移,这在染料敏化太阳能电池(DSSC)中至关重要。然而,尽管已采用表面增强拉曼光谱(SERS)来研究界面,但到目前为止,所获得的信息是从不规则排列的纳米颗粒表面收集的,这为染料分子的吸附构型的精确归因提供了复杂性。在这里,我们采用单晶金红石型TiO2(110),通过利用Au @ SiO2核壳纳米粒子的增强作用,在电化学控制下对TiO2染料界面进行拉曼光谱研究。进行FD-TD模拟以评估由核壳纳米粒子产生的局部电磁场(EM),同时使用Mott-Schottky测量来确定半导体电极的能带结构。在纳米多孔P25 TiO2电极上进行了比较研究。 v(N = C = S)的电位依赖性拉曼位移表明,在通过表面粗糙度消除了可能的键合复杂性之后,N719的SCN基团与TiO2表面的结合是TiO2-N719相互作用的内在本质。尽管如此,在原子平面金红石型TiO2(110)表面上,COOH和TiO2之间的氢键似乎比在纳米多孔P25纳米颗粒表面上更有利,这是由v(C = O)(COOH)上的拉曼位移较强所揭示的。前者。电化学SERS(EC-SERS)结果表明,P25和金红石(110)TiO2表面均发生光感应电荷转移(PICT),实现PICT共振的潜力取决于半导体的能带结构。我们的工作表明,使用基于核壳的表面等离振子共振(SPR)增强策略,EC-SERS可以用于研究单晶半导体分子界面,这将促进对光伏和光催化系统界面的基础研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号