...
首页> 外文期刊>Journal of Neurophysiology >Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena
【24h】

Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

机译:通过电压依赖现象污染神经元电容的电流钳位测量

获取原文
获取原文并翻译 | 示例
           

摘要

Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423-449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161-2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials -95 to -35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence.
机译:测量神经元电容对于形态学描述,电导性表征和神经元建模很重要。一种估计电容的方法是将电流脉冲注入神经元并符合多个指数的膜电位的所得变化;如果神经元纯粹被动,最慢的指数给出神经元电容的幅度和时间常数(主要G,埃文斯JD,Jack JJ。Biophys J 65:423-449,1993)。 golowasch等人。 (Golowasch J,Thomas G,Taylor,Patel A,Pineda A,Khalil C,Nadim F.J Neurophysiol 102:2161-2175,2009)表明这是测量非异己的电容的最佳方法(即,最多)神经元。然而,在未测试的情况下,未测试现有工作,或者介绍了可能存在于通常用于此类工作中的膜电位的慢电压依赖性现象的误差。我们通过在多个膜电位下执行电流钳位的电容测量来研究龙虾(Panulirus Irrentuptus)Stebatogastic神经元的问题。在所有测试膜电位-95至-35mV中存在慢,电压依赖性现象一致的现象。这种现象是神经元电压响应的最慢的部件,并且未能识别和排除它会导致电容高估几百倍。估计电容的大多数方法取决于没有电压依赖性现象。我们的示范表明,即使在良好的超极化膜潜力下,这种现象也使非资格贡献成为神经元反应的贡献,突出了检查所有工作测量神经元电容的这种现象的关键重要性。我们在这里展示如何识别这种现象并尽量减少他们的污染影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号