...
首页> 外文期刊>Nature nanotechnology >2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries
【24h】

2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

机译:2D MOS2作为高性能LI-S电池中的锂金属阳极的有效保护层

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher (-2,600 Wh kg(-1) ). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that similar to 10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2 -coated Li-metal cell operates at a current density of 10 mA cm(-2) with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2 -coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of similar to 589 Wh kg(-1) and a Coulombic efficiency of similar to 98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.
机译:在替代锂离子电池的候选者中,Li-S细胞是一种吸引人的选择,因为它们的能量密度约为5倍(-2,600WH kg(-1))。 Li-S细胞的成功在很大程度上取决于金属锂作为阳极材料的利用。然而,金属锂易于生长寄生树枝状细胞,并且对几种电解质具有高度反应性;此外,具有金属锂的Li-S细胞也易于多硫化物溶解。这里,我们表明,类似于10nm厚的二维(2D)MOS2可以用作Li-Metal阳极的保护层,大大提高了Li-S电池的性能。特别是,我们观察稳定的Li电沉积和抑制树突成核位点。对称MOS2的沉积和溶解过程 - 涂覆的Li-金属电池在电流密度为10mA cm(-2)的电流密度,与使用裸Li-金属相比,循环寿命的低压滞后和三倍改善。在LI-S全细胞构造中,使用MOS2涂层的LI作为阳极和3D碳纳米管 - 硫阴极,我们获得的特定能量密度与589WH kg(-1)和类似的库仑效率在0.5℃下超过1,200个循环的98%。我们的方法可能导致实现高能量密度和安全的锂金属电池。

著录项

  • 来源
    《Nature nanotechnology》 |2018年第4期|共9页
  • 作者单位

    Univ North Texas Dept Mat Sci &

    Technol Denton TX 76203 USA;

    Univ North Texas Dept Mat Sci &

    Technol Denton TX 76203 USA;

    Univ North Texas Dept Mat Sci &

    Technol Denton TX 76203 USA;

    Univ Texas Dallas Dept Mat Sci &

    Technol Richardson TX 75083 USA;

    Univ North Texas Dept Mech &

    Energy Engn Denton TX 76203 USA;

    Univ Texas Dallas Dept Mat Sci &

    Technol Richardson TX 75083 USA;

    Univ North Texas Dept Mat Sci &

    Technol Denton TX 76203 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号