...
首页> 外文期刊>Crystal growth & design >Water-Controlled Crystallization of CaCO3, SrCO3, and MnCO3 from Amorphous Precursors
【24h】

Water-Controlled Crystallization of CaCO3, SrCO3, and MnCO3 from Amorphous Precursors

机译:来自无定形前体的CaCO 3,Srco3和MnCo3的水控结晶

获取原文
获取原文并翻译 | 示例
           

摘要

Calcium carbonate is the most abundant biomineral, whose amorphous form is stabilized in nature by a variety of organic additives and water. It is used to manipulate the morphology of new materials and to make strong inorganic/organic hybrid materials. However, the crystallization pathways (e.g., nucleation and growth, two-step nucleation pathways involving disordered, amorphous, or dense liquid states preceding the appearance of crystalline phases) remain often unclear. We have synthesized three amorphous carbonates, CaCO3 (ACC), SrCO3 (ASC), and MnCO3 (AMnC), that do not require any stabilization by additives to study their crystallization kinetics and mechanisms in the presence of water. The evolution of the carbonate concentration during crystallization was monitored potentiometrically with a pH electrode. The crystallization of ASC proceeds extremely fast, whereas the transformation of AMnC is relatively slow. ACC is an intermediate case between these extremes. The kinetic data were interpreted by a mathematical model based on a dissolution-recrystallization reaction. For high water concentrations, the dissolution rate (and for lower concentrations, the crystallization rate) determines the reaction kinetically. For all three carbonates, the crystallization rate increases with increasing water content. A comparison with the Pearson hardness of the cations indicates that the hydration energy and the binding strength of the hydration shell pose the main kinetic barrier for recrystallization.
机译:碳酸钙是最丰富的生物铝,其无定形形式通过各种有机添加剂和水稳定。它用于操纵新材料的形态并制造强无机/有机混合材料。然而,结晶途径(例如成核和生长,涉及结晶相外观的无序,无定形或致残液态的两步成核途径)仍然不清楚。我们已经合成了三种无定形碳酸盐,CaCO 3(ACC),SRCO3(ASC)和MNCO3(AMNC),不需要添加剂稳定,以研究其在水存在下的结晶动力学和机制。用pH电极对结晶期间的碳酸盐浓度的进化进行调节。 ASC的结晶进入极快,而AMNC的转化相对较慢。 Acc是这些极端之间的中间案例。基于溶解 - 再结晶反应的数学模型解释动力学数据。对于高水浓度,溶出速率(以及较低浓度,结晶率)在动力学中决定了反应。对于所有三种碳酸盐,结晶速率随着含水量的增加而增加。与阳离子的Pearson硬度的比较表明水合能量和水合壳的结合强度占据了重结晶的主要动力学屏障。

著录项

  • 来源
    《Crystal growth & design》 |2018年第8期|共9页
  • 作者单位

    Johannes Gutenberg Univ Mainz Inst Anorgan Chem &

    Analyt Duesbergweg 10-14 D-55128 Mainz Germany;

    Johannes Gutenberg Univ Mainz Inst Anorgan Chem &

    Analyt Duesbergweg 10-14 D-55128 Mainz Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 晶体学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号