...
首页> 外文期刊>Applied optics >Variability of relationship between the volume scattering function at 180 degrees and the backscattering coefficient for aquatic particles
【24h】

Variability of relationship between the volume scattering function at 180 degrees and the backscattering coefficient for aquatic particles

机译:180度的体积散射函数之间的关系变异,以及水生粒子的后散射系数

获取原文
获取原文并翻译 | 示例
           

摘要

Properly interpreting lidar (light detection and ranging) signal for characterizing particle distribution relies on a key parameter, chi(p)(pi), which relates the particulate volume scattering function (VSF) at 180 degrees (beta(p)(pi)) that a lidar measures to the particulate backscattering coefficient (b(bp)). However, chi(p)(pi) has been seldom studied due to challenges in accurately measuring beta(p)(pi) and bbp concurrently in the field. In this study, chi(p)(pi), as well as its spectral dependence, was re-examined using the VSFs measured in situ at high angular resolution in a wide range of waters. beta(p)(pi), while not measured directly, was inferred using a physically sound, well-validated VSF-inversion method. The effects of particle shape and internal structure on the inversion were tested using three inversion kernels consisting of phase functions computed for particles that are assumed as homogenous sphere, homogenous asymmetric hexahedra, or coated sphere. The reconstructed VSFs using any of the three kernels agreed well with the measured VSFs with a mean percentage difference < 5% at scattering angles < 170 degrees. At angles immediately near or equal to 180 degrees, the reconstructed beta(p)(pi) depends strongly on the inversion kernel. chi(p)(pi) derived with the sphere kernels was smaller than those derived with the hexahedra kernel but consistent with chi(p)(pi) estimated directly from highspectral-resolution lidar and in situ backscattering sensor. The possible explanation was that the sphere kernels are able to capture the backscattering enhancement feature near 180 degrees that has been observed for marine particles. chi(p)(pi) derived using the coated sphere kernel was generally lower than those derived with the homogenous sphere kernel. Our result suggests that chi(p)(pi) is sensitive to the shape and internal structure of particles and significant error could be induced if a fixed value of chi(p)(pi) is to be used to interpret lidar signal collected in different waters. On the other hand, chi(p)(pi) showed little spectral dependence. (C) 2020 Optical Society of America
机译:正确解释用于表征颗粒分布的LIDAR(光检测和测距)信号依赖于关键参数CHI(P)(PI),其将颗粒体积散射功能(VSF)与180度(β(P)(PI)相关联激光雷达措施对颗粒后散射系数(B(BP))。然而,由于在场中同时测量β(p)和Bbp的挑战,CHI(P)(PI)很少研究。在本研究中,使用在各种水域中以高角度分辨率在原位测量的VSF来重新检查CHI(P)(PI)以及其光谱依赖性。使用物理声音,验证良好的VSF反转方法推断出β(P)(PI)而不是直接测量。使用由计算为颗粒的相位函数组成的三个反转核来测试颗粒形状和内部结构对转化的影响,所述颗粒被假定为均匀球,均匀的不对称六边形或涂覆球体。使用三个内核中的任何一个重建的VSF与测量的VSF相同,测量的VSF具有平均百分比差值<5%散射角度<170度。在立即接近或等于180度的角度,重建的β(P)(PI)在反转核上强烈依赖于反转核。衍生的球核(P)(PI)小于衍生与六升核的那些,而是与直接从高光谱分辨率激光雷达估计的CHI(P)(PI)一致。可能的解释是球形核能够捕获对海洋颗粒观察到的180度附近的后散射增强特征。使用涂覆的球形核衍生的CHI(P)(PI)通常低于与均匀球核的那些。我们的结果表明Chi(P)(PI)对颗粒的形状和内部结构敏感,如果CHI(P)(PI)的固定值用于解释不同的LIDAR信号,则可以诱导显着的误差水。另一方面,CHI(P)(PI)表现出很少的光谱依赖性。 (c)2020美国光学学会

著录项

  • 来源
    《Applied optics》 |2020年第10期|共11页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号