首页> 外文期刊>Applied optics >High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement
【24h】

High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement

机译:高浓度因子衍射微透镜与CMOS单光子雪崩二极管探测器阵列集成,用于填充因子改善

获取原文
获取原文并翻译 | 示例
           

摘要

Large-format single-photon avalanche diode (SPAD) arrays often suffer from low fill-factors-the ratio of the active area to the overall pixel area. The detection efficiency of these detector arrays can be vastly increased with the integration of microlens arrays designed to concentrate incident light onto the active areas and may be refractive or diffractive in nature. The ability of diffractive optical elements (DOEs) to efficiently cover a square or rectangular pixel, combined with their capability of working as fast lenses (i.e., similar to f/3) makes them versatile and practical lens designs for use in sparse photon applications using microscale, large-format detector arrays. Binary-mask-based photolithography was employed to fabricate fast diffractive microlenses for two designs of 32 x 32 SPAD detector arrays, each design having a different pixel pitch and fill-factor. A spectral characterization of the lenses is performed, as well as analysis of performance under different illumination conditions from wide- to narrow-angle illumination (i.e., f/2 to f/22 optics). The performance of the microlenses presented exceeds previous designs in terms of both concentration factor (i.e., increase in light collection capability) and lens speed. Concentration factors greater than 33 x are achieved for focal lengths in the substrate material as short as 190 mu m representing a microlens f-number of 3.8 and providing a focal spot diameter of <4 mu m. These results were achieved while retaining an extremely high degree of performance uniformity across the 1024 devices in each case, which demonstrates the significant benefits to be gained by the implementation of DOEs as part of anintegrated detector system using SPAD arrays with very small active areas. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
机译:大型单光子雪崩二极管(SPAD)阵列经常遭受低填充因子 - 有源区域与总像素区域的比率。通过将入射光集中在有源区域上的微透镜阵列的整合,可以大大增加这些探测器阵列的检测效率,并且可以在自然界中折射或衍射。衍射光学元件(确实)有效地覆盖正方形或矩形像素的能力,与它们作为快速透镜(即类似于F / 3)的工作能力(即,类似于F / 3)使其成为稀疏光子应用的多功能和实用的镜片设计微尺度,大型探测器阵列。使用基于二进制掩模的光刻法为32×32个SPAD探测器阵列的两种设计制造快速衍射微透镜,每个设计具有不同的像素间距和填充因子。执行镜片的光谱表征,以及在不同照射条件下的性能分析,从宽到窄角照明(即,F / 2至F / 22光学)。呈现的微透镜的性能超过浓度因子(即,光收集能力的增加)和透镜速度的先前设计。在基板材料中的焦距,如190μm表示的微透镜f数为3.8并提供焦点直径为<4μm的焦距,实现大于33×的浓度因子。通过在每种情况下在1024器件中保持极高的性能均匀性来实现这些结果,这表明了通过实施使用SPAD阵列具有非常小的有源区域的阵列的组成探测器系统的一部分来获得的显着益处。光学社会根据创意公约归因于4.0许可的条款发布。

著录项

  • 来源
    《Applied optics》 |2020年第14期|共11页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号