首页> 外文期刊>Applied optics >Digital holographic interferometry investigation of liquid hydrocarbon vapor cloud above a circular well
【24h】

Digital holographic interferometry investigation of liquid hydrocarbon vapor cloud above a circular well

机译:圆孔上方液体烃蒸汽云的数字全息干涉测量研究

获取原文
获取原文并翻译 | 示例
           

摘要

The current study investigates evaporation of liquid hydrocarbons from a circular well cavity of small depth. Gravimetric analysis is performed to measure the evaporation rate and digital holographic interferometry is used for the measurement of normalized mole fraction profile inside the vapor cloud above the well. Phase unwrapping has been implemented to obtain continuous phase distribution in the image plane. The Fourier-Hankel tomographic inversion algorithm is implemented to obtain the refractive index change distribution inside the object plane, i.e., vapor cloud. Four liquid hydrocarbons, i.e., pentane, hexane, cyclohexane, and heptane, are studied. The radius of circular well cavities is varied in the range of 1.5 to 12.5 mm. Results using a quasi-steady, diffusion-controlled model are compared with the experimental evaporation rate. Measured evaporation rates are higher than the diffusion-limited model calculation for all working fluids and well sizes. This difference is attributed to natural convection occurring inside the vapor cloud due to the density difference between the gas-vapor mixture and the surrounding air. Holographic analysis confirms the presence of natural convection by revealing the formation of a flat disk-shaped vapor cloud above the well surface. Experimentally obtained vapor cloud shape is different from the hemispherical vapor cloud obtained using the pure diffusion-limited evaporation model. The gradient of vapor mole fraction at the liquid-vapor interface is higher compared to that of the diffusion-limited model because of the additional transport mechanism due to natural convection. Transient analysis of the vapor cloud reveals time invariant overall shape of the vapor cloud with a reduction in average magnitude of vapor concentration inside the vapor cloud during evaporation. The existing correlation for sessile droplet cannot successfully predict the evaporation rate from a liquid well. A new correlation is proposed for evaporation rate prediction, which can predict the evaporation rate within a root mean square error of 5.6% for a broad size range of well cavity. (C) 2020 Optical Society of America
机译:目前的研究调查了液体烃的蒸发从小深度的圆形孔腔。进行重量分析以测量蒸发速率,数字全息干涉测量法用于测量井中蒸汽云内的常规摩尔分数曲线。已经实施了相位解展示以在图像平面中获得连续相位分布。实现了傅立叶植物断层反转算法以在物体平面内获得折射率变化分布,即蒸气云。研究了四种液体烃,即戊烷,己烷,环己烷和庚烷。圆形阱腔的半径在1.5至12.5mm的范围内变化。使用准稳态,扩散控制模型的结果与实验蒸发速率进行比较。测量的蒸发速率高于所有工作流体和井尺寸的扩散限制模型计算。由于气蒸气混合物和周围空气之间的密度差异,这种差异归因于蒸汽云中发生的自然对流。全息分析通过揭示孔表面上方的扁平盘形蒸汽云形成形成自然对流。实验获得的蒸汽云形状与使用纯扩散限制限制蒸发模型获得的半球蒸汽云不同。与自然对流引起的附加传输机制相比,液体蒸汽界面处的蒸汽摩尔级分的梯度较高。蒸汽云的瞬态分析显示了蒸汽云的时间不变的整体形状,蒸发过程中蒸汽云内的蒸汽浓度的平均幅度降低。无柄液滴的现有相关性不能成功地预测液体井中的蒸发速率。提出了一种用于蒸发速率预测的新相关性,这可以预测较大尺寸范围的较大井腔的均线平均误差内的蒸发速率。 (c)2020美国光学学会

著录项

  • 来源
    《Applied optics》 |2020年第19期|共13页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号