...
首页> 外文期刊>Applied optics >Numerical and experimental investigations of pressure-driven gas flow in hollow-core photonic crystal fibers
【24h】

Numerical and experimental investigations of pressure-driven gas flow in hollow-core photonic crystal fibers

机译:中空芯光子晶体纤维中的压力驱动气流的数值和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

A comprehensive understanding of gas flow in long hollow-core photonic crystal fibers (HC-PCFs) is critical for evaluating their sensing performance for low-concentration gases, especially in terms of response time. The aim of this paper is to numerically and experimentally investigate the pressure-driven gas flow dynamics in a relatively long HC-PCF-based gas sensor. The gas flow in the core of a 1.1 m long HC-PCF was numerically modeled to examine the gas sensing response time in terms of the time for the gas to fill the core (gas filling time). The model was validated against the experimental results of continuous-wave modulated photothermal spectroscopy. The model was then used to analyze the effects of gas inlet pressure, core diameter, fiber length, and gas type on the gas flow field and gas filling time. The results revealed that a lower gas filling time was achieved as the pressure difference between the inlet and outlet increased, the core diameter increased, and/or the core length decreased. The developed numerical model provides valuable information such as cross-sectional velocity profiles and gas flow rates that cannot be readily obtained from simpler analytical models. (C) 2019 Optical Society of America
机译:在长空心光子光子晶体纤维(HC-PCFS)中对气流的全面了解对于评估其对低浓度气体的感测性能至关重要,特别是在响应时间方面。本文的目的是在数控上实验研究相对长的HC-PCF基气体传感器中的压力驱动的气体流动动力学。 1.1M长的HC-PCF的核心中的气流在数量上建模,以在气体填充核心(气体填充时间)的时间方面检查气体传感响应时间。该模型针对连续波调制光热光谱的实验结果验证。然后用于分析气体流动场和气体填充时间气体入口压力,芯直径,纤维长度和气体类型的效果。结果表明,随着入口和出口之间的压力差,芯直径增加,芯长度和/或芯长减小,因此实现了较低的气体填充时间。开发的数值模型提供了有价值的信息,例如横截面速度曲线和不能从更简单的分析模型获得的气体流速。 (c)2019年光学学会

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号