首页> 外文期刊>Applied optics >Optimization of metallic nanoapertures at short-wave infrared wavelengths for self-induced back-action trapping
【24h】

Optimization of metallic nanoapertures at short-wave infrared wavelengths for self-induced back-action trapping

机译:自诱导背动作诱捕短波红外波长金属纳米镜的优化

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents simulation results for double nanohole and inverted bowtie nanoapertures optimized to resonate in the short-wave infrared regime (1050 nm and 1550 nm). These geometries have shown great promise for trapping nanoparticles with applications in optical engineering, physics, and biology. Using a finite element analysis tool, we found that the outline length for inverted bowtie nanoapertures in a 100 nm thick gold film with a 20 nm gap dimension having an optimized transmission resonance for 1050 nm and 1550 nm optical wavelengths is 106.5 nm and 188.5 nm, respectively. With the same gap size, the radii of the circles for the double nanohole nanoapertures are 72 nm and 128 nm. The near-field enhancements of the two structures are almost the same, while the double nanohole geometries have a 20% larger full width at half-maximum than the inverted bowtie. Next, by studying the effect of changing the inner radii of the inverted bowtie corners, we found that the difference between 2 nm and 6 nm corner radii can blue-shift the optical resonance by up to 45 nm. As a result of not having any inner corners, the double nanohole structure requires less precise fabrication and therefore could potentially have a higher successful yield of nanoapertures during the manufacturing process. Lastly, we will show experimental results that confirm the optical resonance of the nanoapertures at 1550 nm. These results will enable better performance and signal-to-noise ratio in nanoaperture trapping for the short-wave infrared wavelength regime. (C) 2019 Optical Society of America
机译:本文介绍了双纳米孔和倒弓形纳米术优化的模拟结果,以在短波红外方程(1050nm和1550nm)中共振。这些几何形状对纳米颗粒具有光学工程,物理和生物学应用的纳米颗粒表示了很好的承诺。使用有限元分析工具,我们发现,在100nm厚的金膜中具有20nm厚的金膜中的倒弓形型纳米孔的轮廓长度,其具有1050nm和1550nm光波长的优化传输共振的20nm间隙尺寸为106.5nm和188.5nm,分别。具有相同的间隙尺寸,双纳米孔纳米腔的圆的半径为72nm和128nm。两个结构的近场增强几乎相同,而双纳米孔几何形状的全宽度具有20%的全宽度比倒置的蝴蝶结较大。接下来,通过研究改变倒弓形角落的内半径的效果,我们发现2nm和6nm拐角半径之间的差异可以将光学共振的蓝色变为高达45nm。由于不具有任何内角,双纳米孔结构需要更精确的制造,因此可能在制造过程中具有较高成功的纳米腹部产率。最后,我们将显示实验结果,该结果确认在1550nm处的纳米腔的光学共振。这些结果将在短波红外波长方案中实现纳米凹陷捕获中的更好的性能和信噪比。 (c)2019年光学学会

著录项

  • 来源
    《Applied optics》 |2019年第35期|共7页
  • 作者单位

    Univ Cent Florida CREOL Coll Opt &

    Photon Orlando FL 32816 USA;

    Univ Cent Florida CREOL Coll Opt &

    Photon Orlando FL 32816 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32310 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32310 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32310 USA;

    Univ Cent Florida CREOL Coll Opt &

    Photon Orlando FL 32816 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号