首页> 外文期刊>Applied optics >Real-time super-resolved 3D in turbid water using a fast range-gated CMOS camera
【24h】

Real-time super-resolved 3D in turbid water using a fast range-gated CMOS camera

机译:使用快速栅极门控CMOS相机实时超分辨3D在浊水中

获取原文
获取原文并翻译 | 示例
           

摘要

We present a range-gated camera system designed for real-time (10 Hz) 3D estimation underwater. The system uses a fast-shutter CMOS sensor (1280 x 1024) customized to facilitate gating with 1.67 ns (18.8 cm in water) delay steps relative to the triggering of a solid-state actively Q-switched 532 nm laser. A depth estimation algorithm has been carefully designed to handle the effects of light scattering in water, i.e., forward and backward scattering. The raw range-gated signal is carefully filtered to reduce noise while preserving the signal even in the presence of unwanted backscatter. The resulting signal is proportional to the number of photons that are reflected during a small time unit (range), and objects will show up as peaks in the filtered signal. We present a peak-finding algorithm that is robust to unwanted forward scatter peaks and at the same time can pick out distant peaks that are barely higher than peaks caused by sensor and intensity noise. Super-resolution is achieved by fitting a parabola around the peak, which we show can provide depth precision below 1 cm at high signal levels. We show depth estimation results when scanning a range of 8 m (typically 1-9 m) at 10 Hz. The results are dependent on the water quality. We are capable of estimating depth at distances of over 4.5 attenuation lengths when imaging high albedo targets at low attenuation lengths, and we achieve a depth resolution (sigma) ranging from 0.8 to 9 cm, depending on signal level. (C) 2018 Optical Society of America
机译:我们介绍了一种用于实时(10 Hz)3D估计的范围门控相机系统。该系统使用快速快门CMOS传感器(1280 x 1024),其定制,以便于在相对于固态的触发相对于固态触发的Q开关532nm激光器的延迟步骤。已经仔细设计了深度估计算法以处理光散射在水中的效果,即向前和向后散射。仔细筛选原始范围门控信号,以减少即使在存在不需要的反向散射的情况下保持信号的同时降低噪音。得到的信号与在较小的时间单元(范围)期间反射的光子的数量成比例,并且对象将显示为滤波信号中的峰值。我们介绍了一种峰值发现算法,对不需要的前向散射峰具有鲁棒,同时可以拾取几乎没有由传感器和强度噪声引起的峰的远处峰值。通过围绕峰值贴合的抛物线来实现超分辨率,我们显示的抛物线可以在高信号电平下提供低于1厘米的深度精度。当扫描10Hz的扫描量为8米(通常为1-9米)时,我们显示深度估计结果。结果取决于水质。当在低衰减长度上成像高反向运动目标时,我们能够在超过4.5衰减长度的距离处估计深度,并且根据信号电平,我们实现了0.8至9cm的深度分辨率(Sigma)。 (c)2018年光学学会

著录项

  • 来源
    《Applied optics》 |2018年第14期|共11页
  • 作者单位

    SINTEF Digital Forskningsveien 1 N-0373 Oslo Norway;

    SINTEF Digital Forskningsveien 1 N-0373 Oslo Norway;

    SINTEF Digital Forskningsveien 1 N-0373 Oslo Norway;

    SINTEF Digital Forskningsveien 1 N-0373 Oslo Norway;

    SINTEF Digital Forskningsveien 1 N-0373 Oslo Norway;

    Odos Imaging Ltd Scottish Microelect Ctr Alexander Crum Brown Rd Edinburgh EN9 3FF Midlothian Scotland;

    Odos Imaging Ltd Scottish Microelect Ctr Alexander Crum Brown Rd Edinburgh EN9 3FF Midlothian Scotland;

    Odos Imaging Ltd Scottish Microelect Ctr Alexander Crum Brown Rd Edinburgh EN9 3FF Midlothian Scotland;

    Odos Imaging Ltd Scottish Microelect Ctr Alexander Crum Brown Rd Edinburgh EN9 3FF Midlothian Scotland;

    SINTEF Digital Forskningsveien 1 N-0373 Oslo Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号