首页> 外文期刊>Applied optics >Technique developments and performance analysis of chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering combustion thermometry
【24h】

Technique developments and performance analysis of chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering combustion thermometry

机译:啁啾探针脉冲飞秒相干抗震拉姆散射燃烧温室的技术开发与性能分析

获取原文
获取原文并翻译 | 示例
           

摘要

This work characterizes the state of the art in the analysis of high-repetition-rate, ultrafast combustion thermometry using chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs-CARS). Several key aspects of the CARS spectroscopy system are described, including: (1) the ultrafast laser source, (2) use of the frequency-doubled idler versus signal from the optical parametric amplifier, (3) the geometry constraints for phase matching, and (4) spectral fitting for single-shot temperature measurements. A frequency-dependent instrument response function (IRF) for the detection system was modeled as a variable-width Gaussian and implemented through a frequency convolution of synthetic spectra. Proper accounting of the IRF increased spectral fitting performance in the high-frequency region where signal oscillations are weaker and narrower. Aggregated data from 25 system performance assessments taken over four months yielded accuracy and precision of 2.7% and +/- 3.5% for flame temperatures, and 9.9% and +/- 6.1% at room temperature, using the commonly reported method. A new processing technique, based on the statistical method of maximum likelihood, was implemented for turbulent flames where strong fluctuations in expected temperatures necessitate use of multiple temperature calibrations. Results from multiple sets of laser parameters are combined to generate an error-weighted temperature from the top-performing calibrations. A testing procedure was designed to characterize system performance when the range of expected temperatures is unknown, simulating the random temperature field of a highly turbulent flame. Accuracy error of the CPP fs-CARS system increased in this more-stressing test at all temperatures, but precision was significantly affected only at room temperature. System stability is characterized, and the contribution from shot-to-shot laser fluctuations on measurement precision is quantified. Finally, the near-adiabatic and steady assumptions for the Hencken burner calibration flame are examined in an axial scan; significant deviations from ideal behavior were observed only at heights of more than four diameters above the burner surface. (C) 2017 Optical Society of America.
机译:这项工作在使用啁啾探针脉冲飞秒连贯的反斯托克斯拉曼散射(CPP FS-CARS)分析了高重复速率,超速燃烧温度的分析中的现有技术。描述了汽车光谱系统的几个关键方面,包括:(1)超快激光源,(2)使用来自光学参数放大器的频率加倍的惰轮与信号,(3)相匹配的几何约束,以及相位匹配的几何约束(4)单次温度测量的光谱配件。用于检测系统的频率相关的仪器响应函数(IRF)被建模为可变宽度高斯和通过合成光谱的频率卷积实现。适当的IRF核对IRF增加了在信号振荡较弱和更窄的高频区域中的光谱拟合性能。 25个系统性能评估的汇总数据超过四个月,在室温下,火焰温度的准确性和精度为2.7%和+/- 3.5%,使用常见的方法在室温下为9.9%和+/- 6.1%。基于最大可能性的统计方法的新加工技术用于湍流的湍流,其中预期温度强烈波动需要使用多个温度校准。组合多组激光参数的结果以产生来自顶部执行校准的误差加权温度。设计过程旨在在预期温度范围未知时表征系统性能,模拟高湍流火焰的随机温度场。 CPP FS-CARS系统的精度误差在所有温度下的这种更强调的测试中增加,但精度仅在室温下受到显着影响。系统稳定性的特征在于,量化了对测量精度的射击激光波动的贡献。最后,在轴向扫描中检查了Hencken燃烧器校准火焰的近绝热和稳定假设;仅在燃烧器表面上方超过四个直径的高度的高度观察到理想行为的显着偏差。 (c)2017年美国光学学会。

著录项

  • 来源
    《Applied optics》 |2017年第31期|共14页
  • 作者单位

    Purdue Univ Sch Mech Engn W Lafayette PA 47906 USA;

    Purdue Univ Sch Mech Engn W Lafayette PA 47906 USA;

    Purdue Univ Sch Mech Engn W Lafayette PA 47906 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号