首页> 外文期刊>Biomaterials Science >Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration
【24h】

Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration

机译:用杂化羟基磷灰石/聚己内酯纳米粒子加强工程3D印刷芯 - 壳水凝胶支架,用于体内骨再生

获取原文
获取原文并翻译 | 示例
           

摘要

The versatility of 3D printing has rendered it an indispensable tool for the fabrication of composite hydrogel scaffolds, offering bone biomimetic features through inorganic and biopolymeric components as promising platforms for osteoregeneration. In this work, extrusion-based 3D printing was employed for the realization of osteoconductive composite biopolymer-based hydrogel scaffolds reinforced with hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles (HAp/PCL NPs) for osteoregeneration. The printing technique was optimized for ink printability and viscosity and crosslinking parameters, where a biopolymeric blend of gelatin, polyvinyl alcohol and hyaluronic acid was developed as innovative plain polymeric ink (PPI). Scaffolds were fabricated by 3D printing adopting a biphasic core/shell geometry, where the core phase of the scaffolds was reinforced with HAp/PCL NPs; the scaffolds were then freeze-dried. Novel composite freeze-dried, loaded-core scaffolds, HAp/PCL NPs-LCS-FD exhibited controlled swelling and maintained structural integrity for 28 days. The developed HAp/PCL NPs-LCS-FD also demonstrated double-ranged pore size, interconnected porosity and efficient mechanical stiffness and strength, favorable for osteoconductive actions. Cell infiltration studies, computed tomography and histomorphometry demonstrated that HAp/PCL NPs-LCS-FD afforded osteoconduction, biodegradation, biocompatibility and bone healing in rabbit tibial model, acting as a template for new bone formation. Our findings suggest that HAp/PCL NPs-LCS-FD could offer prominent bone regeneration and could be involved in various bone defects.
机译:3D印刷的多功能性使其成为制备复合水凝胶支架的不可或缺的工具,通过无机和生物聚合物组分提供骨仿生特征,作为骨骼变量的有望平台。在这项工作中,采用基于挤出的3D印刷来实现用杂交生物活性羟基磷灰石/聚己内酯纳米粒子(HAP / PCL NPS)加强的骨导电复合生物聚合物基水凝胶支架进行骨肉再生。对油墨印刷性和粘度和交联参数进行了优化了印刷技术,其中明胶,聚乙烯醇和透明质酸的生物聚合物共混物作为创新的普通聚合物油墨(PPI)。通过采用双相核心/壳几何形状的3D印刷制造了支架,其中支架的核心相对于Hap / PCL NPS加固;然后将支架冷冻干燥。新型复合冻干干燥,装载核心支架,HAP / PCL NPS-LCS-FD表现出控制的溶胀并保持结构完整性28天。开发的HAP / PCL NPS-LCS-FD还证明了双层孔径,相互连接的孔隙度和有效的机械刚度和强度,有利于骨导电动作。细胞浸润性研究,计算机断层扫描和组织形态学证明了HAP / PCL NPS-LCS-FD提供了逐滴虫,生物降解,生物相容性和骨愈合,其作为新骨形成的模板。我们的研究结果表明,HAP / PCL NPS-LCS-FD可以提供突出的骨再生,并且可以参与各种骨缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号