首页> 外文期刊>Biomaterials Science >Antimicrobial laser-activated sealants for combating surgical site infections
【24h】

Antimicrobial laser-activated sealants for combating surgical site infections

机译:用于调用外科手术部位感染的抗微生物激光激活密封剂

获取原文
获取原文并翻译 | 示例
           

摘要

Surgical-site infections (SSIs) occur in 2-5% of patients undergoing surgery in the US alone, impacting 300 000-500 000 lives each year, and presenting up to 11 times greater risk of death compared to patients without SSIs. The most common cause of SSI is Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA) is the most common pathogen in community hospitals. Current clinical devices used for approximating incisions and traumatic lacerations include sutures, adhesives, tapes, or staples with or without antimicrobial incorporation. However, current closure technologies may not provide adequate protection against infection, are susceptible to wound dehiscence, and can result in delayed biomechanical recoveries. Laser-activated tissue repair is a sutureless technique in which chromophore-loaded sealants convert laser light energy to heat in order to induce rapid tissue sealing. Here, we describe the generation and evaluation of laser-activated sealant (LASE) biomaterials, in which, indocyanine green (ICG), an FDA-approved dye, was embedded in a silk fibroin matrix and cast into films as wound sealants. Silk-ICG films were subjected to different near-infrared (NIR) laser powers to identify temperatures optimal for laser sealing of soft tissues. A mathematical model was developed in order to determine the photothermal conversion efficiency of LASEs following laser irradiation. NIR laser activation of silk-ICG LASEs increased the recovery of skin biomechanical strength compared to sutured skin in full-thickness incisional wounds in immunocompetent mice, and live animal imaging indicated persistence of silk-ICG LASEs over several days. LASEs loaded with the antibiotic vancomycin demonstrated higher efficacies for combating MRSA infections in a mouse model of surgical site infection compared to antibacterial sutures. Our results demonstrate that LASEs can be loaded with antimicrobial drugs and may serve as new multifunctional biomaterials for rapid tissue sealing, repair and surgical site protection following surgery.
机译:手术部位感染(SSIS)发生在2-5%的患者中单独接受手术的患者,每年影响300 000-500 000,与没有SSIS的患者相比,患者的死亡风险增加了11倍。 SSI最常见的原因是金黄色葡萄球菌,耐甲氧西林的金黄色葡萄球菌(MRSA)是社区医院中最常见的病原体。用于近似切口和创伤撕裂的当前临床装置包括缝合线,粘合剂,胶带或有或没有抗微生物掺入的钉。然而,目前的闭合技术可能无法提供足够的免受感染的保护,易受伤口裂缝的影响,并且可以导致生物力学回收延迟。激光激活的组织修复是一种不舒适的技术,其中发色团的密封剂将激光能量转化为热量以诱导快速组织密封。这里,我们描述了激光活化密封剂(促液)生物材料的产生和评估,其中吲哚菁绿(ICG)是FDA批准的染料,嵌入丝素蛋白基质中并作为伤口密封剂浇铸成薄膜。丝绸ICG薄膜经受不同的近红外(NIR)激光功率,以识别软组织激光密封的温度。开发了数学模型,以确定激光照射后液体的光热转换效率。与免疫活性小鼠的全厚切口伤口中的缝合皮肤相比,苏格兰氏菌的尿液激光激活增加了皮肤生物力学强度的恢复,并且活着的动物成像表明丝绸ICG血液的持久性在几天内。与抗菌缝合相比,用抗生素万古霉素加载的血液含有抗生素患者在手术部位感染的小鼠模型中的疗效较高。我们的结果表明,液体可以用抗微生物药物装载,并且可以作为新的多功能生物材料,用于在手术后进行快速组织密封,修复和外科部位保护。

著录项

  • 来源
    《Biomaterials Science》 |2021年第10期|共13页
  • 作者单位

    Arizona State Univ Sch Engn Matter Transport &

    Energy Chem Engn Program Tempe AZ 85287 USA;

    Arizona State Univ Biodesign Inst Ctr Bioelect &

    Biosensors Tempe AZ 85287 USA;

    Arizona State Univ Biol Design Grad Program Tempe AZ 85287 USA;

    Arizona State Univ Sch Engn Matter Transport &

    Energy Chem Engn Program Tempe AZ 85287 USA;

    Arizona State Univ Biol Design Grad Program Tempe AZ 85287 USA;

    Arizona State Univ Biodesign Inst Ctr Bioelect &

    Biosensors Tempe AZ 85287 USA;

    Montana State Univ Chem &

    Biol Engn Dept Bozeman MT 59717 USA;

    Arizona State Univ Dept Anim Care &

    Technol Tempe AZ 85287 USA;

    Arizona State Univ Biodesign Inst Ctr Bioelect &

    Biosensors Tempe AZ 85287 USA;

    Arizona State Univ Sch Engn Matter Transport &

    Energy Chem Engn Program Tempe AZ 85287 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号