...
首页> 外文期刊>Biotechnology Advances: An International Review Journal >How to outwit nature: Omics insight into butanol tolerance
【24h】

How to outwit nature: Omics insight into butanol tolerance

机译:如何脱颖而出:OMICS洞察丁醇宽容

获取原文
获取原文并翻译 | 示例
           

摘要

The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to finetuning of global regulators of transcription (SpoOA, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
机译:能源危机,石油储备枯竭,以及全球气候变化正在迫切发达社会的问题。抵消这是丁醇的微生物生产,这是一种有希望的新燃料和许多石化试剂的替代品。然而,对所有已知的微生物物种的高丁醇毒性是其工业实施的主要障碍。本艺术综述目前的旨在阐述现代OMICS方法最近的进步,以解决这种不可逾越的迄今为止丁醇耐受性的日期问题。基因组学,转录组织和蛋白质组学表明,丁醇耐受性是影响多种基因及其表达的复杂现象。除了在可能进一步改善耐受性的全局调节剂(Spooa,GNTr)的芬坦,外汇泵,胁迫和多药响应,膜传输和氧化还原相关基因在丁醇攻击中最重要的是最重要的。脂多元族学表明,膜组合物(饱和脂质和血浆增加)的改变是非常多种特异性和丁醇相关的。含有CCPA,替代糖类作用的含磷效果,以及作为克服丁醇胁迫的替代途径的替代糖的作用。遗憾的是,同时合成和耐受允许其商业化的丁醇的菌株尚未发现或产生。 OMICS Insight将允许在天然和工程生产商中的丁醇耐受性增加丁醇耐受性以及菌株遗传性丁醇抗性的合成丁醇途径的有效异源表达,其抗性高达3.2-4.9%(w / v)。未来突破可以通过对膜蛋白质组的详细研究来实现,其中21%是具有未知功能的蛋白质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号