...
首页> 外文期刊>Biotechnology Advances: An International Review Journal >Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration
【24h】

Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration

机译:阳极电热:通过阳极呼吸赋予厌氧生产过程

获取原文
获取原文并翻译 | 示例
           

摘要

In nature as well as in industrial microbiology, all microorganisms need to achieve redox balance. Their redox state and energy conservation highly depend on the availability of a terminal electron acceptor, for example oxygen in aerobic production processes. Under anaerobic conditions in the absence of an electron acceptor, redox balance is achieved via the production of reduced carbon-compounds (fermentation). An alternative strategy to artificially stabilize microbial redox and energy state is the use of anodic electro-fermentation (AEF). This emerging biotechnology empowers respiration under anaerobic conditions using the anode of a bioelectrochemical system as an undepletable terminal electron acceptor. Electrochemical control of redox metabolism and energy conservation via AEF can steer the carbon metabolism towards a product of interest and avoid the need for continuous and cost-inefficient supply of oxygen as well as the production of mixed reduced byproducts, as is the case in aerobic production and fermentation processes, respectively. The great challenge for AEF is to establish efficient extracellular electron transfer (EET) from the microbe to the anode and link it to central carbon metabolism to enhance the synthesis of a target product. This article reviews the advantages and challenges of AEF, EET mechanisms, microbial energy gain, and discusses the rational choice of substrateproduct couple as well as the choice of microbial catalyst. Besides, it discusses the potential of the industrial model-organism Bacillus subtilis as a promising candidate for AEF, which has not been yet considered for such an application. This prospective review contributes to a better understanding of how industrial microbiology can benefit from AEF and analyses key-factors required to successfully implement AEF processes. Overall, this work aims to advance the young research field especially by critically revisiting the fundamental aspects of AEF.
机译:在自然中以及工业微生物学中,所有微生物都需要实现氧化还原平衡。它们的氧化还原状态和节能高度取决于终端电子受体的可用性,例如有氧生产过程中的氧气。在不存在电子受体的厌氧条件下,通过生产还原碳化合物(发酵)来实现氧化还原平衡。一种人为稳定微生物氧化还原和能量状态的替代策略是使用阳极电发酵(AEF)。这种新兴生物技术利用生物电化学系统的阳极在厌氧条件下赋予呼吸,作为未浸入的终端电子受体。氧化还原新陈代谢和节能的电化学控制可以转向兴趣的产品的碳代谢,避免需要连续和成本低效的氧气供应以及有氧生产中混合减少的副产品的生产分别发酵过程。对AEF的巨大挑战是从微生物中建立有效的细胞外电子转移(EET)到阳极,并将其与中央碳代谢进行连接以增强靶产物的合成。本文审查了余烬,EET机制,微生物能源增益的优缺点,并讨论了基础产品的理性选择以及微生物催化剂的选择。此外,它讨论了工业模型 - 生物体枯草芽孢杆菌作为禽畜有希望的候选者的潜力,尚未考虑这种应用。这种前瞻性审查有助于更好地了解工业微生物学可以从禽畜中受益的了解,并分析成功实施AEF流程所需的关键因素。总体而言,这项工作旨在推进年轻的研究领域,尤其是批判性地重新审视余烬的基本方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号