首页> 外文期刊>Biogeochemistry >A combined microbial and ecosystem metric of carbon retention efficiency explains land cover-dependent soil microbial biodiversity-ecosystem function relationships
【24h】

A combined microbial and ecosystem metric of carbon retention efficiency explains land cover-dependent soil microbial biodiversity-ecosystem function relationships

机译:碳保留效率的组合微生物和生态系统度量解释了陆地覆盖依赖性土壤微生物体多样性 - 生态系统函数关系

获取原文
获取原文并翻译 | 示例
           

摘要

While soil organic carbon (C) is the foundation of productive and healthy ecosystems, the impact of the ecology of microorganisms on C-cycling remains unknown. We manipulated the diversity, applied here as species richness, of the microbial community present in similar soils on two contrasting land-covers-an adjacent pasture and forest-and observed the transformations of plant detritus and soil organic matter (SOM) using stable isotope (C-13) tracing coupled with a novel nuclear magnetic resonance (NMR) experiment. The amount of detritus-C degraded was not affected by the microbial diversity (p > 0.05), however the fate of detritus- and SOM-C across the diversity gradient was complex and land cover-dependent. For example, in the pasture soil, higher diversity led to lower CO2 production (p = 0.001), a trend driven solely by SOM-C mineralization. There was no relationship between diversity and detritus-C mineralization or production of new mineral-associations after one year (p > 0.05). In contrast, in the forest soil higher diversity resulted in increased detritus-C (p = 0.01) and SOM-C (p = 0.0008) mineralization and decreased mineral-associated organic matter formation (p = 0.02). In both land cover types, retention efficiency-a measure that integrates both microbial physiology and the ability of the ecosystem to retain C-explained C loss and transformation trends. Overall, this demonstrates that the trajectory of C gained and lost is altered by land management-induced changes to microbial communities, soil structure, and chemical characteristics underlying SOM persistence.
机译:虽然土壤有机碳(C)是生产和健康生态系统的基础,但微生物生态对C循环的影响尚不清楚。我们利用稳定同位素(C-13)示踪和新型核磁共振(NMR)实验,操纵了相邻牧场和森林两个对比土地上相似土壤中微生物群落的多样性,并将其应用于物种丰富度,观察了植物碎屑和土壤有机质(SOM)的变化。碎屑C的降解量不受微生物多样性的影响(p>0.05),但碎屑和SOM-C在多样性梯度上的归宿是复杂的,且取决于土地覆盖。例如,在牧场土壤中,较高的多样性导致较低的CO2产量(p=0.001),这一趋势完全由SOM-C矿化驱动。一年后,多样性与碎屑C矿化或新矿物组合的产生之间没有关系(p>0.05)。相反,在森林土壤中,更高的多样性导致碎屑C(p=0.01)和SOM-C(p=0.0008)矿化增加,矿物相关有机质形成减少(p=0.02)。在这两种土地覆盖类型中,保留效率——一种综合了微生物生理学和生态系统保留碳的能力的指标——解释了碳的损失和转化趋势。总的来说,这表明,土壤碳的获得和损失轨迹是由土地管理引起的微生物群落、土壤结构和SOM持久性背后的化学特征的变化所改变的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号