首页> 外文期刊>Catalysis Letters >Novel Synthesis of Cu@ZnO and Ag@ZnO Nanocomposite via Green Method: A Comparative Study for Ultra-Rapid Catalytic and Recyclable Effects
【24h】

Novel Synthesis of Cu@ZnO and Ag@ZnO Nanocomposite via Green Method: A Comparative Study for Ultra-Rapid Catalytic and Recyclable Effects

机译:通过绿色方法新的Cu @ ZnO和Ag ZnO纳米复合材料的新方法:超快速催化和可回收效应的比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

The use of metal immobilized/decorated nanocomposites as catalyst were usually used in environmental pollution remediation and protection, industrial production, and biomedical applications. Finding a new and efficient method for the green synthesis of metal nanoparticles immobilized over porous material is of great interest. Synthesis of more stable and outstanding Cu@ZnO and Ag@ZnO nanocomposite for nitro aromatic compound reduction were reported in this work. The metal nanoparticles and nanocomposite was characterized using UV-Vis spectrum, XRD, Raman spectra, TEM, SAED, EDS, and FTIR techniques. The immobilized Cu and Ag nanoparticles are with an average size of 18 and 12 nm on ZnO surface respectively. Comparatively, the Cu/ZnO and Ag/ZnO nanocomposite acted as an efficient heterostructure catalyst in the reduction of p-nitrophenol to p-aminophenol than pure Cu and Ag nanoparticles with more stability up to six cycles. The characterization results inferred the synergic effect between metal and porous material played important role in its activity and stability of Cu@ZnO and Ag@ZnO nanocomposite more than pure Cu and Ag nanoparticles. It is proposed that Cu and Ag immobilized ZnO applicable in various catalytic activities were achieved.
机译:金属固定化/修饰纳米复合材料作为催化剂通常用于环境污染修复和保护、工业生产和生物医学应用。寻找一种新的、高效的方法来绿色合成多孔材料上固定的金属纳米颗粒具有重大意义。合成了更稳定、更优异的Cu@ZnO和Ag@ZnO报道了用于硝基芳香族化合物还原的纳米复合材料。利用紫外-可见光谱、XRD、拉曼光谱、TEM、SAED、EDS和FTIR技术对金属纳米颗粒和纳米复合材料进行了表征。固定化的铜和银纳米颗粒在ZnO表面的平均尺寸分别为18和12nm。相比之下,铜/氧化锌和银/氧化锌纳米复合材料在将对硝基苯酚还原为对氨基苯酚的过程中,比纯铜和银纳米颗粒作为一种高效的异质结构催化剂,其稳定性高达六个循环。表征结果表明,金属与多孔材料之间的协同效应对其活性和稳定性起着重要作用Cu@ZnO和Ag@ZnO纳米复合物比纯的铜和银纳米颗粒多。结果表明,铜和银固定化氧化锌可用于各种催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号