...
首页> 外文期刊>Journal of Biomechanics >A novel coupled musculoskeletal finite element model of the spine - Critical evaluation of trunk models in some tasks
【24h】

A novel coupled musculoskeletal finite element model of the spine - Critical evaluation of trunk models in some tasks

机译:一些任务中躯干模型脊柱临界评价的新型耦合肌肉骨骼有限元模型

获取原文
获取原文并翻译 | 示例
           

摘要

Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R-2 congruent to 0.97, RMSE congruent to 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80 degrees) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (similar to 38%), segmental (similar to 44%) and disc (similar to 22%) compression forces but larger segmental (similar to 9%) and disc (similar to 17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations. (C) 2021 Elsevier Ltd. All rights reserved.
机译:脊柱肌肉骨骼(MS)模型对椎间关节的自由度(旋转和/或平移)、表示(球形或梁状关节)和特性(线性或非线性)进行简化假设。他们通常也忽略了关节盘核/环、关节面和韧带的真实结构。我们的目标是开发一种新的MS模型,其中躯干肌肉被纳入韧带T12-S1脊柱的详细有限元(FE)模型中,从而构建金标准耦合MS-FE模型。在某些任务下,将模型预测与我们早期的球形接头、梁接头和混合(非耦合)MS-FE模型进行比较。耦合模型预测L4-L5椎间盘内压力(R-2与0.97一致,RMSE与0.27 MPa一致)和L1-S1旋转中心(CoRs),与活体数据一致。躯干弯曲角度越大,模型预测的差异越大;在屈曲峰值(80度)时,与混合模型相比,耦合模型预测的整体/局部肌力(类似于38%)、节段(类似于44%)和椎间盘(类似于22%)压缩力要小得多,但节段(类似于9%)和椎间盘(类似于17%)剪切载荷、下腰椎水平的韧带力(高达57%)和各个水平的关节突力要大得多。球形/梁式关节模型预测,在较大的屈曲角度下,肌肉力量和节段负荷要大得多。与具有固定CoRs的球形关节模型不同,梁关节模型预测的CoRs更接近耦合模型的CoRs(在屈曲任务中RMSE=2.3 mm)。该耦合模型为未来外科技术的改进、肌肉骨骼损伤的处理和特定对象的模拟研究提供了巨大的潜力。(c)2021爱思唯尔有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号