...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors
【24h】

High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors

机译:用于室内空气质量监测的高性能气体传感器阵列:Au纳米粒子对WO3,SnO2和NIO的气体传感器的作用

获取原文
获取原文并翻译 | 示例
           

摘要

With the increasing demands of indoor air quality monitoring, highly sensitive and selective gas sensor arrays consisting of metal oxide semiconductors have been increasingly studied. As an effective strategy to obtain the desired performance, noble metal functionalization is frequently chosen owing to its target-specific sensing mechanisms. However, the lack of a comprehensive analysis on the sensing mechanisms of different combinations of metal oxides and noble metals limit the versatility of these sensor arrays for use in selective gas sensor arrays. In this study, we fabricate a 3 x 3 gas sensor array to obtain a reliable comparison of the sensing mechanism through the use of three metal oxides-WO3, SnO2 and NiO-in three different nanostructure forms: a thin film and dome-like nanostructures with and without Au nanoparticle (NP) decoration. The responses of the sensor arrays to four target gases (CH3COCH3, C6H5CH3, NH3, and H2S) are generally enhanced by the dome-like nanostructure and show distinctively enhanced responses when the sensors are decorated with Au NPs. Moreover, the dome-like SnO2 with Au NPs shows an increase of up to 121 times for C6H5CH3 compared with the pristine SnO2 thin film. Additionally, the sensitization effects of Au NPs depend on the types of metal oxides and gases, which improve the gas discrimination capability by diversifying the gas selectivity of the sensor units in the array. The prepared sensor array can distinguish four target gases by principal component analysis (PCA). The contributions of different enhancement mechanisms, which are dependent on the gases and metal oxides, are investigated by comparing the activation energy of each gas response with and without Au. The comparison among the chosen gases reveals that the decoration of Au NPs is effective for C6H5CH3 and NH3 regardless of the type of metal oxide. Among the metal oxides, the effects of Au NPs on gas responses are in the order of SnO2, NiO, and WO3, in which the energy level difference between the Au NPs and metal oxide are 0.2, 0.1, and -0.6 eV, respectively. These results confirm that the dominant enhancement mechanism of Au NPs for each combination of gases and metal oxide is a decrease in activation energy. Therefore, this study provides a systematic understanding of the sensitization mechanism of Au NPs on metal oxides toward gases for the fabrication of selective gas sensor arrays.
机译:随着室内空气质量监测需求的增加,由金属氧化物半导体组成的高灵敏度、高选择性气体传感器阵列得到了越来越多的研究。贵金属功能化作为获得预期性能的有效策略,由于其特定于目标的传感机制,经常被选择。然而,缺乏对金属氧化物和贵金属不同组合的传感机理的全面分析,限制了这些传感器阵列在选择性气体传感器阵列中的多功能性。在本研究中,我们制作了一个3 x 3的气体传感器阵列,通过使用三种不同纳米结构形式的金属氧化物WO3、SnO2和NiO来获得可靠的传感机制比较:薄膜和穹顶状纳米结构,带有和不带有金纳米颗粒(NP)装饰。传感器阵列对四种目标气体(CH3COCH3、C6H5CH3、NH3和H2S)的响应通常由穹顶状纳米结构增强,并且当传感器用金纳米颗粒装饰时,其响应显著增强。此外,与原始SnO2薄膜相比,带有Au NP的圆顶状SnO2显示C6H5CH3的增加高达121倍。此外,金纳米颗粒的敏化效应取决于金属氧化物和气体的类型,通过使阵列中传感器单元的气体选择性多样化,提高了气体识别能力。通过主成分分析(PCA),所制备的传感器阵列可以区分四种目标气体。通过比较含金和不含金的每种气体响应的活化能,研究了不同增强机制(取决于气体和金属氧化物)的贡献。所选气体之间的比较表明,金纳米粒子的装饰对C6H5CH3和NH3是有效的,无论金属氧化物的类型如何。在金属氧化物中,金纳米粒子对气体响应的影响顺序为SnO2、NiO和WO3,其中金纳米粒子和金属氧化物之间的能级差分别为0.2、0.1和-0.6 eV。这些结果证实,对于气体和金属氧化物的每种组合,金纳米颗粒的主要增强机制是活化能的降低。因此,本研究为制备选择性气体传感器阵列提供了对金纳米粒子在金属氧化物上对气体敏化机理的系统理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号