...
首页> 外文期刊>International journal of structural stability and dynamics >Local-Coordinate Representation for Spatial Revolute Clearance Joints Based on a Vector-Form Particle-Element Method
【24h】

Local-Coordinate Representation for Spatial Revolute Clearance Joints Based on a Vector-Form Particle-Element Method

机译:基于载体形式粒子元素法的空间旋转间隙关节局部坐标表示

获取原文
获取原文并翻译 | 示例
           

摘要

Previously, the contact states between the bearing and journal of a spatial revolute joint (SRJ) with both axial and radial clearances were solved in the global coordinate system (GCS), which is complex and requires iterations. In this paper, a local-coordinate representation for the SRJs with clearance is combined with a vector-form particle-element method, i.e. finite particle method (FPM), to provide a more practical means for evaluation of the dynamic effects due to clearance. Firstly, the fundamentals of the FPM for analysis of spatial mechanisms are briefed. Then, a local-coordinate representation based on the revolution axis of the bearing is proposed. Specifically, the geometry of the journal and bearing is explicitly expressed using the coordinate transformation. The axial and radial contact states are evaluated by substituting the parametric equations and transforming them to quadratic and quartic equations, respectively, which can be analytically solved without iterations. The contact forces are evaluated in the local-coordinate representation and then transformed into the GCS representation. Two numerical examples, i.e. a spatial slider-crank mechanism and a spatial double pendulum, are provided to demonstrate the feasibility of the proposed method, by which the effects of joint-joint interaction and joint-flexible component interaction are fully discussed.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号