首页> 外文期刊>European Journal of Soil Biology >Microbiological indicators of soil quality predicted via proximal and remote sensing
【24h】

Microbiological indicators of soil quality predicted via proximal and remote sensing

机译:通过近端和遥感预测土壤质量的微生物指标

获取原文
获取原文并翻译 | 示例
           

摘要

This work sought to predict soil microbiological attributes based on soil fertility and texture, elemental contents determined by portable X-ray fluorescence spectrometry, and terrain attribute data with and without addition of season (dry or rainy) and phytophysiognomy as auxiliary predictors. Soil samples were collected in both seasons in four phytophysiognomies. Analyses for prediction of basal soil respiration, microbial biomass carbon, metabolic quotient, and microbial quotient were performed. Terrain attributes, total elemental concentrations obtained by portable X-ray fluorescence spectrometry, soil fertility and texture as well as phytophysiognomy and season were used as predictor variables. Prediction models were created via conditional random forest algorithm and validated with leave-one-out cross-validation through coefficient of determination (R2), root mean square error, mean absolute error and ratio percent deviation. The best results were delivered when phytophysiognomy and season were included as predictors. Metabolic quotient, microbial quotient, microbial biomass carbon and basal soil respiration achieved the best prediction using only soil fertility and texture data (R2 = 0.79, 0.66, 0.65, 0.91, respectively). Predictions of basal soil respiration and metabolic quotient using only terrain data achieved R2 values of 0.91 and 0.73, respectively. Elemental concentrations determined by portable X-ray fluorescence spectrometry reasonably predicted two microbiological attributes. It is possible to adequately predict these four microbiological attributes both locally and spatially through terrain and soil properties data. We encourage further investigations on prediction of these and other microbiological attributes under different environmental conditions and at shorter spatial and temporal scales.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号