首页> 外文期刊>Metals and Materials International >Role of Hydrogen and Temperature in Hydrogen Embrittlement of Equimolar CoCrFeMnNi High-entropy Alloy
【24h】

Role of Hydrogen and Temperature in Hydrogen Embrittlement of Equimolar CoCrFeMnNi High-entropy Alloy

机译:氢气和温度在等摩尔弗雷甘尼高熵合金中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

We investigated the effects of hydrogen and temperature on hydrogen embrittlement (HE) of cold-rolled equimolar CoCrFeMnNi high-entropy alloy (HEA). The HE exhibited intergranular fracture in this HEA at 298 and 177 K. At 177 K, more twins formed than at 298 K, and this acted as a hydrogen-diffusion path. During deformation, local stress was concentrated at the triple junction consisting of grain and twin boundaries. Hydrogen diffused predominantly along the boundary and encountered stress-concentration regions. Cracks initiated and propagated predominantly through the grain/twin boundaries by hydrogen diffusion at 298 and 177 K. Therefore, HE occurred at 298 and 177 K. At 77 K, hydrogen was distributed throughout the specimen as twin formation was more active. The cryogenic temperature of 77 K caused the hydrogen to become trapped and thus not diffuse into the stress-concentration region. Thus, there was no significant HE at 77 K. Graphic abstract
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号