...
首页> 外文期刊>Neurochemistry International: The International Journal for the Rapid Publication of Critical Reviews, Preliminary and Original Research Communications in Neurochemistry >[1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol, an indole-3-carbinol derivative, inhibits glutamate release in rat cerebrocortical nerve terminals by suppressing the P/Q-type Ca2+ channels and Ca2+/calmodulin/protein kinase A pathway
【24h】

[1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol, an indole-3-carbinol derivative, inhibits glutamate release in rat cerebrocortical nerve terminals by suppressing the P/Q-type Ca2+ channels and Ca2+/calmodulin/protein kinase A pathway

机译:[1-(4-氯-3-硝基磺酰基)-1H-吲哚-3-基] - 甲醇,吲哚-3-甲醇衍生物,通过抑制P / Q型CA2 +通道抑制大鼠脑内神经末端的谷氨酸释放 和Ca2 + /钙调蛋白/蛋白激酶是一种途径

获取原文
获取原文并翻译 | 示例
           

摘要

Indole-3-carbinol (I3C), found in cruciferous vegetables, has been proposed to exhibit neuroprotective effects. This study aimed to investigate the effect of the I3C derivative [1(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3yl]-methanol (CIM), which has superior pharmacokinetic properties to I3C, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). We observed that CIM dose-dependently inhibited glutamate release evoked by the potassium channel blocker 4-aminopyridine (4-AP). CIM-mediated inhibition of glutamate release was attributed to reduced exocytosis, as it correlated with the removal of extracellular calcium and blocking of the vesicular glutamate transporter but not the glutamate transporter. In addition, CIM decreased 4-AP-evoked intrasynaptosomal Ca2+ elevation; however, it did not alter the synaptosomal membrane potential. The inhibition of P/Q-typeCa(2+) channels abolished the effect of CIM on 4-AP-evoked glutamate release, and the effect was not prevented by intracellular Ca2+ release inhibitors. Moreover, the molecular docking study showed that CIM exhibited the highest binding affinity with the P/Q-type Ca(2+)channels. Finally, the CIM-mediated inhibition of glutamate release was sensitive to calmodulin, adenylate cyclase (AC), and protein kinase A (PKA) inhibitors. Based on these results, we propose that CIM, through the direct suppression of P/Q-type Ca2+ channels, decreases Ca2+ influx and the activation of Ca2+/calmodulin/AC/PKA signaling, thereby inhibiting glutamate release. This finding is crucial for understanding the role of CIM in the central nervous system and for exploiting its potential in therapeutic interventions.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号