首页> 外文期刊>Soil Science and Plant Nutrition >Effects of alternate wetting and drying technique on greenhouse gas emissions from irrigated rice paddy in Central Luzon, Philippines
【24h】

Effects of alternate wetting and drying technique on greenhouse gas emissions from irrigated rice paddy in Central Luzon, Philippines

机译:易于润湿性和干燥技术对菲律宾中部吕宋岛灌溉稻田温室气体排放的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Alternate wetting and drying (AWD) technique has been widely reported to reduce methane (CH4) emission from irrigated rice paddies. However, little is known about its feasibility in an environment that has distinct weather conditions involving tropical wet season (WS). To investigate the AWD's feasibility in terms of reducing greenhouse gas (GHG) emissions both in dry season (DS) and WS, 3-year field experiments were conducted in Central Luzon, Philippines. Three treatments of water management were continuous flooding (CF), flooding when surface water level naturally declines to 15 cm below the soil surface (AWD), and site-specific AWD that modified the criteria of soil drying (AWDS). Methane and nitrous oxide (N2O) fluxes were measured using a closed chamber method, and the global warming potential (GWP) of the two GHGs was calculated. Rice grain yield did not significantly differ among treatments. In accordance with the previous findings, the seasonal total CH4 emission was significantly greater in WS than in DS. The effect of treatment was significant, but the reduction rate by AWD was just 1.7% compared to CF. The seasonal total N2O emission was significantly affected by cropping season and treatment. The AWD increased the N2O emission by 97%, especially in DS. The resultant GWP did not significantly differ among three treatments. The results indicate that the AWD and AWDS with the current settings were insufficient to reduce the annual GHG emissions in this site. However, fragmentary results obtained in the last DS suggest that an earlier rice residue incorporation and keeping dry soil conditions in the preceding fallow season is effective in reducing CH4 emission in combination with an earlier implementation of AWD.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号