...
首页> 外文期刊>Physical review, C >Covariant density functional theory input for r-process simulations in actinides and superheavy nuclei: The ground state and fission properties
【24h】

Covariant density functional theory input for r-process simulations in actinides and superheavy nuclei: The ground state and fission properties

机译:电极肌酐和超核r-Process模拟的协助密度功能理论输入:地面态和裂变性能

获取原文
获取原文并翻译 | 示例
           

摘要

A systematic investigation of the ground-state and fission properties of even-even actinides and superheavy nuclei with Z = 90-120 from the two-proton up to two-neutron drip lines with proper assessment of systematic theoretical uncertainties has been performed for the first time in the framework of covariant density functional theory (CDFT). These results provide a necessary theoretical input for the r-process modeling in heavy nuclei and, in particular, for the study of fission cycling. Four state-of-the-art globally tested covariant energy density functionals (CEDFs), namely, DD-PC1, DD-ME2, NL3*, and PC-PK1, representing the major classes of the CDFT models are employed in the present paper. Ground-state deformations, binding energies, two-neutron separation energies, alpha-decay Q(alpha), values and half-lives, and the heights of fission barriers have been calculated for all these nuclei. Theoretical uncertainties in these physical observables and their evolution as a function of proton and neutron numbers have been quantified and their major sources have been identified. Spherical shell closures at Z = 120, N = 184, and N = 258 and the structure of the single-particle (especially, highj) states in their vicinities as well as nuclear matter properties of employed CEDFs are two major factors contributing to theoretical uncertainties. However, different physical observables are affected in a different way by these two factors. For example, theoretical uncertainties in calculated ground-state deformations are affected mostly by the former factor, while theoretical uncertainties in fission barriers depend on both of these factors.
机译:在协变密度泛函理论(CDFT)框架下,首次对Z=90-120的偶数锕系和超重核的基态和裂变性质进行了系统研究,从两个质子到两个中子滴线,并对系统理论不确定性进行了适当评估。这些结果为重核的r过程建模,特别是裂变循环的研究提供了必要的理论输入。本文采用了四种最先进的全球测试协变能量密度泛函(CEDF),即DD-PC1、DD-ME2、NL3*和PC-PK1,代表了CDFT模型的主要类别。计算了所有这些核的基态变形、结合能、两个中子分离能、α衰变Q(α)、值和半衰期,以及裂变势垒的高度。这些物理观测的理论不确定性及其随质子数和中子数的变化已被量化,其主要来源已被确定。Z=120、N=184和N=258时的球壳闭包、单粒子(尤其是高j)态在其邻近位置的结构以及所使用的CEDF的核物质性质是导致理论不确定性的两个主要因素。然而,这两个因素以不同的方式影响着不同的物理观测值。例如,计算基态变形的理论不确定性主要受前一个因素的影响,而裂变势垒的理论不确定性则取决于这两个因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号