...
首页> 外文期刊>Plasma Sources Science & Technology >Fluorescence (TALIF) measurement of atomic hydrogen concentration in a coplanar surface dielectric barrier discharge
【24h】

Fluorescence (TALIF) measurement of atomic hydrogen concentration in a coplanar surface dielectric barrier discharge

机译:共面表面介电阻挡放电中原子氢浓度的荧光(缩略图)测量

获取原文
获取原文并翻译 | 示例
           

摘要

Spatially and temporally resolved measurements of atomic hydrogen concentration above the dielectric of coplanar barrier discharge are presented for atmospheric pressure in 2.2% H-2/Ar. The measurements were carried out in the afterglow phase by means of two-photon absorption laser-induced fluorescence (TALIF). The difficulties of employing the TALIF technique in close proximity to the dielectric surface wall were successfully addressed by taking measurements on a suitable convexly curved dielectric barrier, and by proper mathematical treatment of parasitic signals from laser-surface interactions. It was found that the maximum atomic hydrogen concentration is situated closest to the dielectric wall from which it gradually decays. The maximum absolute concentration was more than 10(22) m(-3). In the afterglow phase, the concentration of atomic hydrogen above the dielectric surface stays constant for a considerable time (10 mu s-1 ms), with longer times for areas situated farther from the dielectric surface. The existence of such a temporal plateau was explained by the presented 1D model: the recombination losses of atomic hydrogen farther from the dielectric surface are compensated by the diffusion of atomic hydrogen from regions close to the dielectric surface. The fact that a temporal plateau exists even closest to the dielectric surface suggests that the dielectric surface acts as a source of atomic hydrogen in the afterglow phase.
机译:在大气压力为2.2%H-2/Ar时,对共面势垒放电介质上方的氢原子浓度进行了空间和时间分辨测量。测量是在余辉阶段通过双光子吸收激光诱导荧光(TALIF)进行的。通过在合适的凸面弯曲介质阻挡层上进行测量,并通过对激光表面相互作用产生的寄生信号进行适当的数学处理,成功地解决了在介质表面壁附近使用TALIF技术的困难。研究发现,最大原子氢浓度位于离介质壁最近的位置,从介质壁开始氢逐渐衰变。最大绝对浓度超过10(22)m(-3)。在余辉阶段,电介质表面上方的氢原子浓度在相当长的时间(10μs-1 ms)内保持不变,距离电介质表面较远的区域保持不变的时间更长。这种时间平台的存在可以用所提出的一维模型来解释:距离介质表面较远的氢原子的复合损耗由靠近介质表面区域的氢原子扩散来补偿。即使距离电介质表面最近,也存在一个时间平台,这表明电介质表面在余辉阶段充当原子氢的来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号