...
首页> 外文期刊>Journal of industrial and engineering chemistry >Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries
【24h】

Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries

机译:作为锂 - 硫电池的非导电金属氧化物的宿主材料合成POMPON样ZnO微球及催化作用

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-sulfur batteries have attracted tremendous attention as promising next-generation battery systems because of their high theoretical specific capacity and cost-competitiveness. Nevertheless, the commercialization of sulfur-based cathodes has been limited by substantial problems such as the insulating property of S-8/Li2S, low active material utilization, and inevitable dissolution of lithium polysulfides into organic electrolytes. Among the materials used to solve these problems, metal oxide materials have attracted attention because of their strong chemical/physical interactions with polysulfides and catalytic effect. However, most studies include strategies to add electron networks or synthesize metal oxides into nanosize because of the nonconductive properties of metal oxides. Herein, to demonstrate the intrinsic effect of metal oxides, pompon-like ZnO microspheres (p-ZnO) are employed by a hydrothermal method and subsequent calcination for a sulfur host (p-ZnO/S) for the first time. The composite of p-ZnO/S significantly enhanced the sulfur utilization and rate capability without additional efforts to improve the electrical conductivity. In addition, the decrease of reaction resistance and charge-transfer resistance was shown in electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) results. Furthermore, the catalytic effect is described by analyzing the lithium ion diffusion coefficient and verifying the chemical composition change on the cathode surface during the sulfur redox reaction. (C) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
机译:锂硫电池由于其较高的理论比容量和成本竞争力,作为有前途的下一代电池系统受到了广泛关注。然而,硫基阴极的商业化受到了一些实质性问题的限制,例如S-8/Li2S的绝缘性能、活性材料利用率低,以及多硫化锂不可避免地溶解到有机电解质中。在用于解决这些问题的材料中,金属氧化物材料因其与多硫化物的强化学/物理相互作用和催化作用而引起了人们的关注。然而,由于金属氧化物的非导电性,大多数研究包括添加电子网络或合成纳米级金属氧化物的策略。在此,为了证明金属氧化物的本征效应,首次通过水热方法和随后对硫主体(p-ZnO/S)的煅烧来使用蓬蓬状ZnO微球(p-ZnO)。p-ZnO/S复合材料在不增加电导率的情况下,显著提高了硫的利用率和速率能力。此外,电化学阻抗谱(EIS)和恒电流间歇滴定技术(GITT)的结果显示反应电阻和电荷转移电阻降低。此外,通过分析锂离子扩散系数和验证硫氧化还原反应期间阴极表面化学成分的变化,描述了催化效果。(2021)韩国工业和工程化学学会。由爱思唯尔B.V.出版。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号