...
首页> 外文期刊>Journal of natural gas science and engineering >Time-normalized conductivity concept for analytical characterization of dynamic-conductivity hydraulic fractures through pressure-transient analysis in tight gas reservoirs
【24h】

Time-normalized conductivity concept for analytical characterization of dynamic-conductivity hydraulic fractures through pressure-transient analysis in tight gas reservoirs

机译:动态导电性液压裂缝分析表征的时间归一化电导率概念通过狭窄气体储层压力瞬态分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a time-normalized conductivity concept to allow an analytical model for characterization of dynamically-closed fractures through pressure-transient analysis in tight gas reservoirs. Specifically, the fracture conductivity in our flow model is considered to be a function of time. With the definition of the time-dependent fracture conductivity in the model, calculation of variable-rate pressure-transient behavior (e.g., pressure buildup tests) can be still based on the solution of linear differential equations governing fluid flow in a gas reservoir. Therefore, the superposition principle can be legitimately utilized in our solution to model pressure buildup tests. We then introduce a modified exponential function to represent the decline behavior of the time-normalized fracture conductivity during the production stage, and the dynamic fracture conductivity is essentially handled in a stair-step manner to calculate bottom-hole pressures. The accuracy of the calculated transient pressures was validated by comparing with a commercial simulator. The pressure drawdowns at early-times, because of dynamically-closed fractures, clearly increase more than in the invariant-fracture-conductivity case. We examine the effects of fracture conductivity behavior and production history on the pressuretransient response extensively, and use them to help identify the presence of dynamically-closed fractures. Finally, we demonstrate the influence of dynamically-closed fractures in synthetic and field cases to show the utility of the methodology. Results indicate that integrating multiple pressure build-up data obtained in different production periods enable us to diagnose and then to understand the changes in fracture conductivity during reservoir depletion. Using the results from the multiple pressure-transient analyses, this method can further be used to forecast the trend of fracture conductivity changes.
机译:本文提出了一种时间归一化电导率概念,通过对致密气藏的压力瞬变分析,建立了描述动态闭合裂缝特征的分析模型。具体而言,我们的流动模型中的裂缝导流能力被认为是时间的函数。根据模型中随时间变化的裂缝导流能力的定义,变速率压力瞬态行为(例如压力恢复试验)的计算仍然可以基于控制气藏中流体流动的线性微分方程的解。因此,叠加原理可以合理地用于我们的压力恢复试验模型解决方案中。然后,我们引入一个修正的指数函数来表示时间归一化裂缝导流能力在生产阶段的下降行为,动态裂缝导流能力基本上是以阶梯式方式处理的,以计算井底压力。通过与商业模拟器的比较,验证了计算瞬态压力的准确性。由于动态闭合裂缝,早期的压降明显比恒定裂缝导流能力情况下的压降增加更多。我们广泛研究了裂缝导流性能和生产历史对压力瞬变响应的影响,并使用它们来帮助识别动态闭合裂缝的存在。最后,我们在合成和现场案例中展示了动态闭合裂缝的影响,以展示该方法的实用性。结果表明,综合不同生产阶段获得的多个压力恢复数据,可以诊断并了解储层衰竭期间裂缝导流能力的变化。利用多重压力瞬变分析的结果,该方法可进一步用于预测裂缝导流能力的变化趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号