...
首页> 外文期刊>Journal of Micromechanics and Microengineering >Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing
【24h】

Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing

机译:通过原位直接激光写入,集成3D印刷的微流体电路和软微量型致动器

获取原文
获取原文并翻译 | 示例
           

摘要

Over the past two decades, researchers have advanced and employed integrated microfluidic circuitry to enable a wide range of chemical and biological 'lab-on-a-chip' capabilities. Yet in recent years, a wholly different field, soft robotics, has begun harnessing microfluidic circuitry as a promising means to enhance soft robot autonomy. Unfortunately, key challenges associated with not only the fabrication of microfluidic circuitry, but also its integration with soft robotic systems represent critical barriers to progress. To overcome such issues, here we present a strategy that leverages 'in situ direct laser writing (isDLW)'-a submicron-scale additive manufacturing (or 'three-dimensional (3D) printing') approach developed previously by our group-to fabricate microfluidic circuit elements and soft microrobotic actuators directly inside of enclosed microchannels. In addition, we introduce 'normally closed' microfluidic transistors that comprise free-floating sealing discs designed to block source-to-drain fluid flow until the application of a target gate pressure. As an exemplar, we printed microfluidic transistors with distinct gate activation properties as well as identical soft microgrippers downstream of each drain within 40 mu m-tall microchannels. Experimental results for a source pressure of 100 kPa revealed that microgripper deformation was prevented in the absence of a gate input; however, increasing the gate pressure to 300 kPa induced actuation of one set of microgrippers, while a further increase to 400 kPa led to both sets of microgrippers actuating successfully. These results suggest that the presented isDLW-based strategy for manufacturing and integrating 3D microfluidic circuit elements and microrobotic end effectors could offer unique potential for emerging soft robotic applications.
机译:在过去20年中,研究人员已经开发并使用集成微流控电路,以实现各种化学和生物“芯片上实验室”功能。然而,近年来,一个完全不同的领域,软机器人技术,已经开始利用微流控电路作为一种有希望的手段来增强软机器人的自主性。不幸的是,不仅与微流控电路的制造相关,而且与软机器人系统的集成相关的关键挑战是进步的关键障碍。为了克服这些问题,我们提出了一种利用“原位直接激光写入(isDLW)”的策略,这是一种亚微米级的附加制造(或“三维(3D)打印”)方法,由我们的团队开发,用于直接在封闭微通道内制造微流控电路元件和软微机器人执行器。此外,我们还介绍了“常闭”微流控晶体管,这些晶体管包括自由浮动的密封盘,设计用于阻止从源到排放的流体流动,直到应用目标闸门压力。作为一个例子,我们在40μm高的微通道内印刷了具有不同栅极激活特性的微流控晶体管,以及每个漏极下游相同的软微夹持器。在100 kPa的源压力下的实验结果表明,在没有闸门输入的情况下,微夹持器变形得到了防止;然而,将闸门压力增加到300 kPa会导致一组微夹持器启动,而进一步增加到400 kPa会导致两组微夹持器成功启动。这些结果表明,所提出的基于isDLW的3D微流控电路元件和微机器人末端执行器制造和集成策略可能为新兴的软机器人应用提供独特的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号