首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Assessing mechanical behavior of ostrich and equine trabecular and cortical bone based on depth sensing indentation measurements
【24h】

Assessing mechanical behavior of ostrich and equine trabecular and cortical bone based on depth sensing indentation measurements

机译:基于深度传感缩进测量评估鸵鸟和大二指尖和皮质骨的力学行为

获取原文
获取原文并翻译 | 示例
           

摘要

Guided bone regeneration surgeries are based on grafting a scaffold in the site to be repaired. The main focus of the scaffold is to provide mechanical support to newly formed blood vessels and cells that will colonize the grafted site, achiving bone regenertation. In this regards, the aim of this study was to characterize the anatomy, structular, surface morphologycal, chemical composition, and nanomechanical properties of ostrich and equine trabecular bone. Ostrich and equine specimens were obtained from a local abattoir and bone was obtained by blunt dissection, n = 5. Tissue bone anatomy and trabecular structure were measured using Computerized Axial Tomography (CAT). Atomic Force Microscopy (AFM) and Energy dispersion spectrometry of X-ray (EDS) were used to examine surface morphology and chemical composition of the trabecular ostrich and equine bone. Mechanical behavior was analysted by nanoindentation. Equine specimens were examined as control. CAT results suggest that in terms of anthropometry, ostrich tarsometatarsus bone is more suitable due to its length is 432.56 ? 3.12 mm vs. the highest human bone structures reported, which femur length is 533.66 ? 18.81 mm. Besides, the low radiodensity in the Hounsfield scale exhibits equine trabecular bone more brittle (Av = 1538.4 ? 0.9) than ostrich trabecular bone (Av = 462.1 ? 1.5). EDS showed a slight variation of the element Calcium (Ca2+) ranging from 20% to 25.5% wt in equine bone; the Ca2+ content variation is consistent with the ringshaped morphology, while in ostrich bone the chemical composition is homogeneous. The elastic modulus, nanohardness (E = 5.3 ? 0.7 GPa, H = 220 ? 10 MPa) and average roughness (Ra = 207 nm) are similar to the human trabecular bone which could reduce the stress shielding, all of these findings suggest that ostrich bone can be promising for native tissue scaffolds for mechanically demanding applications. This research makes innovative contributions to science and provides a framework, which will allow us to address future biomedical tests, and rapidly identify promising organic and sustainable waste for tissue scaffold.
机译:引导性骨再生手术的基础是在需要修复的部位移植支架。支架的主要重点是为新形成的血管和细胞提供机械支持,这些血管和细胞将在移植部位定植,实现骨再生。在这方面,本研究的目的是描述鸵鸟和马小梁骨的解剖、结构、表面形态、化学成分和纳米力学特性。鸵鸟和马标本取自当地屠宰场,骨骼通过钝性解剖获得,n=5。利用计算机轴向断层扫描(CAT)测量组织骨解剖和小梁结构。采用原子力显微镜(AFM)和X射线能谱仪(EDS)研究了鸵鸟和马骨小梁的表面形态和化学成分。通过纳米压痕分析了材料的力学行为。以马标本作为对照。CAT结果表明,在人体测量方面,鸵鸟跗跖骨更合适,因为其长度为432.56?3.12毫米,与报道的最高人类骨骼结构相比,哪根股骨长度为533.66?18.81毫米。此外,Hounsfield标度的低放射性密度显示马骨小梁比鸵鸟骨小梁更脆(Av=1538.4?0.9)(Av=462.1?1.5)。EDS显示马骨中的钙元素(Ca2+)在20%到25.5%重量范围内有轻微变化;钙含量的变化与环状形态一致,而鸵鸟骨的化学成分是均匀的。弹性模量、纳米硬度(E=5.3?0.7 GPa,H=220?10 MPa)和平均粗糙度(Ra=207 nm)与人体小梁骨相似,可以减少应力屏蔽,所有这些结果都表明鸵鸟骨有望成为机械要求较高的天然组织支架。这项研究对科学做出了创新性贡献,并提供了一个框架,使我们能够解决未来的生物医学测试,并快速确定有希望的有机和可持续废物用于组织支架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号