首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Improving reconstructive surgery design using Gaussian process surrogates to capture material behavior uncertainty
【24h】

Improving reconstructive surgery design using Gaussian process surrogates to capture material behavior uncertainty

机译:使用高斯工艺代理改善重建手术设计以捕捉物质行为不确定性

获取原文
获取原文并翻译 | 示例
           

摘要

To produce functional, aesthetically natural results, reconstructive surgeries must be planned to minimize stress as excessive loads near wounds have been shown to produce pathological scarring and other complications (Gurtner et al., 2011). Presently, stress cannot easily be measured in the operating room. Consequently, surgeons rely on intuition and experience (Paul et al., 2016; Buchanan et al., 2016). Predictive computational tools are ideal candidates for surgery planning. Finite element (FE) simulations have shown promise in predicting stress fields on large skin patches and in complex cases, helping to identify potential regions of complication. Unfortunately, these simulations are computationally expensive and deterministic (Lee et al., 2018a). However, running a few, well selected FE simulations allows us to create Gaussian process (GP) surrogate models of local cutaneous flaps that are computationally efficient and able to predict stress and strain for arbitrary material parameters. Here, we create GP surrogates for the advancement, rotation, and transposition flaps. We then use the predictive capability of these surrogates to perform a global sensitivity analysis, ultimately showing that fiber direction has the most significant impact on strain field variations. We then perform an optimization to determine the optimal fiber direction for each flap for three different objectives driven by clinical guidelines (Leedy et al., 2005; Rohrer and Bhatia, 2005). While material properties are not controlled by the surgeon and are actually a source of uncertainty, the surgeon can in fact control the orientation of the flap with respect to the skin's relaxed tension lines, which are associated with the underlying fiber orientation (Borges, 1984). Therefore, fiber direction is the only material parameter that can be optimized clinically. The optimization task relies on the efficiency of the GP surrogates to calculate the expected cost of different strategies when the uncertainty of other material parameters is included. We propose optimal flap orientations for the three cost functions and that can help in reducing stress resulting from the surgery and ultimately reduce complications associated with excessive mechanical loading near wounds.
机译:为了产生功能性的、美学上自然的结果,必须计划重建手术,以尽量减少压力,因为伤口附近的过度负荷已被证明会产生病理性瘢痕和其他并发症(Gurtner等人,2011年)。目前,在手术室很难测量压力。因此,外科医生依赖直觉和经验(Paul等人,2016;Buchanan等人,2016)。预测性计算工具是手术计划的理想选择。有限元(FE)模拟在预测大型皮肤贴片和复杂情况下的应力场方面显示出了希望,有助于确定潜在的并发症区域。不幸的是,这些模拟计算成本高且具有确定性(Lee等人,2018a)。然而,通过运行一些精心挑选的有限元模拟,我们可以创建局部皮瓣的高斯过程(GP)替代模型,该模型计算效率高,能够预测任意材料参数的应力和应变。在这里,我们为推进、旋转和转位皮瓣创建GP替代物。然后,我们使用这些替代物的预测能力进行全局灵敏度分析,最终表明纤维方向对应变场变化的影响最大。然后,我们根据临床指南(Leedy等人,2005年;Rohrer和Bhatia,2005年)为三个不同的目标进行优化,以确定每个皮瓣的最佳纤维方向。虽然材料特性不受外科医生控制,实际上是不确定性的来源,但外科医生实际上可以控制皮瓣相对于皮肤松弛张力线的方向,这与潜在的纤维方向有关(Borges,1984)。因此,纤维方向是临床上唯一可以优化的材料参数。当考虑到其他材料参数的不确定性时,优化任务依赖于GP代理的效率来计算不同策略的预期成本。我们提出了三种成本函数的最佳皮瓣方向,这有助于减少手术产生的压力,并最终减少与伤口附近过度机械负荷相关的并发症。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号