首页> 外文期刊>Applied optics >Concentration and pressure scaling of CH2O electronic-resonance-enhanced coherent anti-Stokes Raman scattering signals
【24h】

Concentration and pressure scaling of CH2O electronic-resonance-enhanced coherent anti-Stokes Raman scattering signals

机译:CH2O电子共振增强相干抗震拉曼散射信号的浓度和压力缩放

获取原文
获取原文并翻译 | 示例
           

摘要

Nanosecond electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) is evaluated for the measurement of formaldehyde (CH2O) concentrations in reacting and nonreacting conditions. The three-color scheme utilizes a 532 run pump beam and a scanned Stokes beam near 624 nm for Raman excitation of the C-H symmetric stretch (nu(1)) vibrational mode; further, a 342 nm resonant probe is tuned to produce the outgoing CARS signal via the 1(0)(1)4(0)(3) vibronic transition between the ground ((X) over tilde (1)A(1)) and first excited ((A) over tilde (1)A(2)) electronic states. This allows detection of CH2O at concentrations as low as 9 x 10(14) molecules/cm(3) (55 parts per million) in a calibration cell with CH2O and N-2 at 1 bar and 450 K with 3% uncertainty. The measurements show a quadratic dependence of the signal with CH2O number density. Pressure scaling experiments up to 11 bar in the calibration cell show an increase in signal up to 8 bar. We study pressure dependence up to 11 bar and further apply the technique to characterize the CH2O concentration in an atmospheric premixed dimethyl ether/air McKenna burner flame, with a maximum concentration uncertainty of 11%. This approach demonstrates the feasibility for spatially resolved measurements of minor species such as CH2O in reactive environments and shows promise for application in high-pressure combustors. (C) 2021 Optical Society of America
机译:对纳秒电子共振增强相干反斯托克斯拉曼散射(ERE-CARS)在反应和非反应条件下测量甲醛(CH2O)浓度进行了评估。三色方案利用532运转泵浦光束和624nm附近的扫描斯托克斯光束进行C-H对称拉伸(nu(1))振动模式的拉曼激发;此外,对342 nm共振探头进行调谐,以通过地面((X)在tilde(1)a(1)上)和第一激发((a)在tilde(1)a(2)上)电子状态之间的1(0)(1)4(0)(3)振动跃迁产生输出CARS信号。这允许在校准池中以低至9 x 10(14)分子/cm(3)(百万分之55)的浓度检测CH2O,其中CH2O和N-2在1巴和450 K下,不确定度为3%。测量结果表明,信号与CH2O数密度呈二次相关。校准单元中高达11巴的压力缩放实验显示,信号增加高达8巴。我们研究了高达11巴的压力依赖性,并进一步应用该技术来表征大气预混合二甲醚/空气麦肯纳燃烧器火焰中的CH2O浓度,最大浓度不确定度为11%。该方法证明了在反应性环境中对CH2O等微量组分进行空间分辨测量的可行性,并有望在高压燃烧室中得到应用。(2021)美国光学学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号