首页> 外文期刊>Nanotechnology >Dielectric optical nanoantennas
【24h】

Dielectric optical nanoantennas

机译:介电光学纳米烯烃

获取原文
获取原文并翻译 | 示例
           

摘要

Nanophotonics allows the manipulation of light on the subwavelength scale. Optical nanoantennas are nanoscale elements that enable increased resolution in bioimaging, novel photon sources, solar cells with higher absorption, and the detection of fluorescence from a single molecule. While plasmonic nanoantennas have been extensively explored in the literature, dielectric nanoantennas have several advantages over their plasmonic counterparts, including low dissipative losses and near-field enhancement of both electric and magnetic fields. Nanoantennas increase the optical density of states, which increase the rate of spontaneous emission due to the Purcell effect. The increase is quantified by the Purcell factor, which depends on the mode volume and the quality factor. It is one of the main performance parameters for nanoantennas. One particularly interesting feature of dielectric nanoantennas is the possibility of integrating them into optical resonators with a high quality-factor, further improving the performance of the nanoantennas and giving very high Purcell factors. This review introduces the properties and parameters of dielectric optical nanoantennas, and gives a classification of the nanoantennas based on the number and shape of the nanoantenna elements. An overview of recent progress in the field is provided, and a simulation is included as an example. The simulated nanoantenna, a dimer consisting of two silicon nanospheres separated by a gap, is shown to have a very small mode volume, but a low quality-factor. Some recent works on photonic crystal resonators are reviewed, including one that includes a nanoantenna in the bowtie unit-cell. This results in an enormous increase in the calculated Purcell factor, from 200 for the example dimer, to 8 x 10(6) for the photonic crystal resonator. Some applications of dielectric nanoantennas are described. With current progress in the field, it is expected that the number of applications will grow and that nanoantennas will be incorporated into new commercial products. A list of relevant materials with high refractive indexes and low losses is presented and discussed. Finally, prospects and major challenges for dielectric nanoantennas are addressed.
机译:纳米光子学允许在亚波长尺度上操纵光。光学纳米天线是纳米级元件,能够提高生物成像、新型光子源、吸收率更高的太阳能电池以及单个分子的荧光检测的分辨率。虽然等离子体纳米天线在文献中得到了广泛的研究,但与等离子体纳米天线相比,介质纳米天线有几个优点,包括低损耗和电场和磁场的近场增强。纳米天线增加了态的光密度,由于Purcell效应增加了自发辐射的速率。增加量由Purcell因子量化,该因子取决于模式体积和质量因子。这是纳米天线的主要性能参数之一。介电纳米天线的一个特别有趣的特点是,可以以高质量因数将其集成到光学谐振器中,进一步改善纳米天线的性能,并提供非常高的Purcell因数。本文介绍了介电光学纳米天线的特性和参数,并根据纳米天线单元的数量和形状对纳米天线进行了分类。本文概述了该领域的最新进展,并以模拟为例。模拟的纳米天线是一种由两个硅纳米球组成的二聚体,由一个间隙隔开,其模式体积非常小,但品质因数较低。本文综述了光子晶体谐振器的一些最新研究成果,包括在蝴蝶结单元中安装纳米天线的研究。这导致计算的Purcell因子大幅增加,从示例二聚体的200增加到光子晶体谐振器的8 x 10(6)。介绍了介电纳米天线的一些应用。随着该领域目前的进展,预计应用的数量将增加,纳米天线将被纳入新的商业产品中。介绍并讨论了一系列具有高折射率和低损耗的相关材料。最后,展望了介质纳米天线的发展前景和面临的主要挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号