首页> 外文期刊>Nanotechnology >A novel highly dispersed tetra-metal nano heterogeneous ozone catalyst derived from microbial adsorption and in situ pyrolysis
【24h】

A novel highly dispersed tetra-metal nano heterogeneous ozone catalyst derived from microbial adsorption and in situ pyrolysis

机译:一种高度分散的四金属纳米非均质臭氧催化剂,其衍生自微生物吸附和原位热解

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, the pyrolysis of microbial biomasses that adsorb various metal ions has enabled the preparation of carbon-based polymetallic nanomaterials with excellent electrocatalytic and electrical energy storage properties. However, the preparation of ozone catalysts by this technique and the corresponding catalytic oxidation mechanism are still unclear. In this study, an Escherichia coli strain (BL21) was used for tetra-metal (Cu, Fe, Mn and Al) absorption and the obtained microbial biomass was pyrolyzed under the protection of a nitrogen flow at 700 degrees C and activated at 900 degrees C to prepare a microbial-char-based tetra-metal ozone catalyst (MCOC). This was used to degrade phenol and coking wastewater and exhibited a strong catalytic capability for coking wastewater, whose chemical oxygen demand removal efficiency of 70.86% is 16.7% higher than that of pure ozone and 14.67%, 7.21% and 3.58% higher than that of three commercial catalysts, respectively. It also improved the efficiency of ozonation for phenol by 33%. The MCOC was characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive spectroscopy, transmission electron microscopy and other methods. The results demonstrated that the spherical metal nanoparticles had sizes ranging from 3 nm to 7 nm and that crystals of Fe2O3 and Fe3P were observed. The study showed that the MCOC promoted the production of more hydroxyl radicals and superoxides from ozone, which attack organics. The oxygen vacancies of the catalyst were also investigated. It was proved that the Lewis acid sites on the surface of metal oxides are the active centers of ozone decomposition. Therefore, this work provides a new method for the synthesis of multi-metal nanocomposites and expands the application of biosynthetic nanomaterials.
机译:近年来,吸附各种金属离子的微生物生物质的热解使得碳基多金属纳米材料的制备具有优异的电催化和电储能性能。然而,利用该技术制备臭氧催化剂及其催化氧化机理尚不清楚。在本研究中,一株大肠杆菌菌株(BL21)被用于四金属(铜、铁、锰和铝)的吸收,获得的微生物生物量在700℃的氮气流保护下热解,并在900℃下活化,以制备微生物炭基四金属臭氧催化剂(MCOC)。该催化剂用于降解苯酚和焦化废水,对焦化废水表现出很强的催化能力,其化学需氧量去除率为70.86%,比纯臭氧高16.7%,比三种工业催化剂分别高14.67%、7.21%和3.58%。它还将臭氧氧化苯酚的效率提高了33%。采用x射线衍射、x射线光电子能谱、扫描电子显微镜、能量色散谱、透射电子显微镜等方法对MCOC进行了表征。结果表明,球形金属纳米颗粒的粒径在3nm到7nm之间,并且观察到了Fe2O3和Fe3P晶体。研究表明,MCOC促进臭氧产生更多的羟基自由基和超氧化物,从而攻击有机物。还研究了催化剂的氧空位。证明了金属氧化物表面的路易斯酸中心是臭氧分解的活性中心。因此,本研究为合成多金属纳米复合材料提供了一种新的方法,拓展了生物合成纳米材料的应用。

著录项

  • 来源
    《Nanotechnology》 |2021年第6期|共13页
  • 作者单位

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

    Kunming Inst Precious Met State Key Lab Adv Technol Comprehens Utilizat Pla Kunming 650106 Yunnan Peoples R China;

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

    Cent South Univ Sch Minerals Proc &

    Bioengn Changsha 410083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    microbial synthesis; metal nanoparticles; heterogeneous catalytic ozonation; coking wastewater; E; coli BL21;

    机译:微生物合成;金属纳米颗粒;多相催化臭氧氧化;焦化废水;E大肠杆菌BL21;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号