首页> 外文期刊>Nanotechnology >The effects of sub-bandgap transitions and the defect density of states on the photocurrent response of a single ZnO-coated silica nanospring
【24h】

The effects of sub-bandgap transitions and the defect density of states on the photocurrent response of a single ZnO-coated silica nanospring

机译:子带隙转变的影响及状态缺陷密度对单ZnO涂层二氧化硅纳米型氧化硅的光电流响应

获取原文
获取原文并翻译 | 示例
           

摘要

The electrical and optoelectronic properties of nanometer-sized ZnO structures are highly influenced by its native point defects. Understanding and controlling these defects are essential for the development of high-performance ZnO-based devices. Here, an electrical device consisting of a polycrystalline ZnO-coated silica nanospring was fabricated and used to characterize the electrical and photoconductive properties of the ZnO layer using near-UV (405 nm) and sub-bandgap (532 and 633 nm) excitation sources. We observe a photocurrent response with all three wavelengths and notably with 532 nm green illumination, which is the energy associated with deep oxygen vacancies. The polycrystalline ZnO-coated silica nanospring exhibits a high responsivity of 1740 A W(-1)with the 405 nm excitation source. Physical models are presented to describe the photocurrent rise and decay behavior of each excitation source where we suggest that the rise and decay characteristics are highly dependent on the energy of the excitation source and the trapping of electrons and holes in intermediate defect levels in the bandgap. The energy levels of the trap depths were determined from the photoconductive decay data and are matched to the reported energy levels of singly and doubly ionized oxygen vacancies. A phenomenological model to describe the dependence of the saturation photocurrent on excitation intensity is presented in order to understand the characteristics of the observed breaks in the slopes of the saturation photocurrent versus excitation intensity profile.
机译:纳米ZnO结构的电学和光电性能受到其本征点缺陷的高度影响。理解和控制这些缺陷对于开发高性能的ZnO基器件至关重要。在这里,我们制作了一种由多晶ZnO涂层二氧化硅纳米弹簧组成的电子器件,并使用近紫外(405nm)和亚带隙(532和633nm)激发源来表征ZnO层的电学和光电导特性。我们观察到所有三种波长的光电流响应,尤其是532nm绿色照明,这是与深氧空位相关的能量。在405nm的激发源下,多晶氧化锌包覆的二氧化硅纳米弹簧表现出1740AW(-1)的高响应率。给出了描述每个激发源的光电流上升和衰减行为的物理模型,其中我们认为上升和衰减特性高度依赖于激发源的能量以及带隙中中间缺陷能级中电子和空穴的捕获。陷阱深度的能级由光电导衰变数据确定,并与报道的单电离和双电离氧空位能级相匹配。提出了一个描述饱和光电流与激发强度依赖关系的唯象模型,以了解饱和光电流与激发强度曲线斜率中观察到的断裂特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号