首页> 外文期刊>Nanotechnology >Vertical MoS(2)on SiO2/Si and graphene: effect of surface morphology on photoelectrochemical properties
【24h】

Vertical MoS(2)on SiO2/Si and graphene: effect of surface morphology on photoelectrochemical properties

机译:SiO2 / Si和石墨烯上的垂直MOS(2):表面形态对光电化学性质的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional materials have attracted intensive attention recently due to their unique optical and electronic properties and their promising applications in water splitting and solar cells. As a representative layer-structured of transition metal dichalcogenides, MoS(2)has attracted considerable devotion owing to its exceptional photo and electro properties. Here, we show that the chemical vapour deposition (CVD) growth of MoS(2)on Si photocathode and graphene/Si photocathode can be used to prepare photoelectrocatalysts for water splitting. We explore a bottom-up method to grow vertical heterostructures of MoS(2)and graphene by using the two-step CVD. Graphene is first grown through ambient-pressure CVD on a Cu substrate and then transferred onto SiO2/Si substrate by using the chemical wet transfer followed by the second CVD method to grow MoS(2)over the graphene/SiO2/Si. The effect of the growth temperatures of MoS(2)is studied, and the optimum temperature is 800 degrees C. The MoS(2)produced at 800 degrees C has the highest photocurrent density at -0.23 mA degrees cm(-2)in 0.5 M Na(2)SO(4)and -0.51 mA degrees cm(-2)in 0.5 M H(2)SO(4)at -0.8 V versus Ag/AgCl. The linear sweep voltammetry shows that MoS(2)in 0.5 M H(2)SO(4)has about 55% higher photocurrent density than MoS(2)in Na(2)SO(4)due to the higher concentration of protons (H+) in the H(2)SO(4)electrolyte solution. Protons are reduced to H(2)at lower overvoltage and hydrogen generation is thus enhanced at higher photocurrent density. MoS2/graphene/SiO2/Si (MGS) has -0.07 mA degrees cm(-2)at -0.8 V versus Ag/AgCl of photocurrent density, which is 70% lower than that of bare MoS(2)because MGS is thicker compared with MoS2. Thus, MoS(2)has potential as a photocatalyst in photoelectrochemical water splitting. The structure and the morphology of MoS(2)play an important role in determining the photocurrent performance.
机译:二维材料由于其独特的光学和电学性质以及在水分解和太阳能电池中的应用前景,近年来引起了人们的广泛关注。MoS(2)作为过渡金属二卤化物结构的代表层,因其优异的光电性能而备受关注。在这里,我们证明了在硅光电阴极和石墨烯/硅光电阴极上化学气相沉积(CVD)生长MoS(2)可以用于制备用于分解水的光电催化剂。我们探索了一种自下而上的方法,通过两步CVD生长MoS(2)和石墨烯的垂直异质结构。石墨烯首先通过环境压力CVD在铜衬底上生长,然后通过化学湿转移转移转移到SiO2/Si衬底上,然后通过第二CVD方法在石墨烯/SiO2/Si上生长MoS(2)。研究了MoS(2)的生长温度对其生长的影响,最佳温度为800℃。与Ag/AgCl相比,在-0.8v电压下,在800℃下制备的MoS(2)在-0.23ma-cm(-2)和-0.51ma-cm(-2)下具有最高的光电流密度。线性扫描伏安法表明,由于H(2)SO(4)电解质溶液中质子(H+)浓度较高,0.5 mH(2)SO(4)中的MoS(2)比Na(2)SO(4)中的MoS(2)具有约55%的高光电流密度。质子在较低的过电压下被还原为H(2),因此氢的生成在较高的光电流密度下被增强。MoS2/石墨烯/SiO2/Si(MGS)在-0.8 V下的光电流密度与Ag/AgCl相比为-0.07 mA°cm(-2),比裸MoS(2)低70%,因为MGS比MoS2更厚。因此,MoS(2)在光电化学分解水方面具有潜在的光催化剂作用。MoS(2)的结构和形貌在决定光电流性能方面起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号