...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms
【24h】

Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms

机译:量化溶剂化程序中的不确定性,用于造型水相反应机制

获取原文
获取原文并翻译 | 示例
           

摘要

Computational quantum chemistry provides fundamental chemical and physical insights into solvated reaction mechanisms across many areas of chemistry, especially in homogeneous and heterogeneous renewable energy catalysis. Such reactions may depend on explicit interactions with ions and solvent molecules that are nontrivial to characterize. Rigorously modeling explicit solvent effects with molecular dynamics usually brings steep computational costs while the performance of continuum solvent models such as polarizable continuum model (PCM), charge-asymmetric nonlocally determined local-electric (CANDLE), conductor-like screening model for real solvents (COSMO-RS), and effective screening medium method with the reference interaction site model (ESM-RISM) are less well understood for reaction mechanisms. Here, we revisit a fundamental aqueous hydride transfer reaction—carbon dioxide (CO_(2)) reduction by sodium borohydride (NaBH_(4))—as a test case to evaluate how different solvent models perform in aqueous phase charge migrations that would be relevant to renewable energy catalysis mechanisms. For this system, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations almost exactly reproduced energy profiles from QM simulations, and the Na~(+) counterion in the QM/MM simulations plays an insignificant role over ensemble averaged trajectories that describe the reaction pathway. However, solvent models used on static calculations gave much more variability in data depending on whether the system was modeled using explicit solvent shells and/or the counterion. We pinpoint this variability due to unphysical descriptions of charge-separated states in the gas phase (i.e., self-interaction errors), and we show that using more accurate hybrid functionals and/or explicit solvent shells lessens these errors. This work closes with recommended procedures for treating solvation in future computational efforts in studying renewable energy catalysis mechanisms.
机译:计算量子化学为许多化学领域的溶剂化反应机制提供了基本的化学和物理见解,尤其是在均相和非均相可再生能源催化中。这类反应可能依赖于与离子和溶剂分子的显式相互作用,而这些相互作用对表征来说并不重要。用分子动力学严格模拟显式溶剂效应通常会带来高昂的计算成本,而连续介质溶剂模型的性能,如极化连续介质模型(PCM)、电荷不对称非局部确定局部电场(烛光)、真实溶剂类导体屏蔽模型(COSMO-RS),对于反应机理,采用参考相互作用位点模型(ESM-RISM)的有效筛选介质方法还不太清楚。在这里,我们回顾了硼氢化钠(NaBH_4)还原二氧化碳(CO_2))的基本水氢化物转移反应——作为一个测试案例,以评估不同溶剂模型在与可再生能源催化机制相关的水相电荷迁移中的表现。对于这个系统,量子力学/分子力学(QM/MM)分子动力学模拟几乎准确地再现了QM模拟中的能量分布,而QM/MM模拟中的Na~(+)反离子在描述反应路径的系综平均轨迹中起着不重要的作用。然而,静态计算中使用的溶剂模型给出了更多的数据可变性,这取决于系统是使用显式溶剂壳和/或反离子建模。我们指出了由于气相中电荷分离态的非物理描述(即自相互作用误差)导致的这种可变性,并且我们表明,使用更精确的混合泛函和/或显式溶剂壳层可以减少这些误差。这项工作以在未来研究可再生能源催化机制的计算工作中处理溶剂化的推荐程序结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号