...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Mechanism and Dynamics of Formation of Bisoxo Intermediates and O–O Bond in the Catalytic Water Oxidation Process
【24h】

Mechanism and Dynamics of Formation of Bisoxo Intermediates and O–O Bond in the Catalytic Water Oxidation Process

机译:催化水氧化过程中双氧化中间体和O-O键形成的机制和动力学

获取原文
获取原文并翻译 | 示例
           

摘要

This work elucidates the reactivity of water molecules toward the tridentate nitrogen-containing iron complex in the water oxidation process. Here, we consider the Fe~(V)–bisoxo complex {[Fe~(V)(Me_(3)tacn)(OH_(2))(═O)_(2)]~(+)} to be responsible for the oxygen–oxygen bond formation. This O–O bond formation happens through the addition of water as a nucleophile. The transition state was determined by the synchronous transit-guided quasi-Newton method using reactants and products and verified by intrinsic reaction coordinates (IRCs). From the IRC calculations, we observe that the Fe~(V)═O moiety is attacked by water and assisted by the H-bonded interaction with the oxygen atom of the bisoxo complex. The hydrogen atom is transferred to the oxygen atom of the bisoxo complex through the transition state, and subsequently, the hydroxide is transferred to another oxygen of the bisoxo complex, resulting in the formation of the oxygen–oxygen bond. This work also explains the effect of explicit water molecules on the oxygen–oxygen bond formation. Our results also show how the formation of superoxide plays an essential role in O_(2) evolution. We used the potential energy scan method to compute the transition state in the oxygen evolution step. In the present work, we study the effect of chlorine on the formation of the oxygen–oxygen bond formation. In this study, the changes in the oxidation state, spin density, and spin multiplicity of the complexes are investigated for each successive step. Apart from these static theoretical calculations, we also studied the oxygen–oxygen bond formation through first-principles molecular dynamics with the aid of the well-tempered metadynamics sampling technique. From the observation of the free energy surfaces from metadynamics simulations, it is evident that the hydroxide transfer has a lesser free energetic reaction as compared to the proton transfer. This complete mechanistic study may give an idea to design a suitable water oxidation catalyst.
机译:这项工作阐明了水氧化过程中水分子对三齿含氮铁络合物的反应性。在这里,我们考虑Fe~(V)-双氧配合物{[Fe~(V)(Me~(3)TaTn)(OHO(2)))。═O) _(2)]~+}负责氧-氧键的形成。这种O–O键的形成是通过以亲核试剂的形式加入水来实现的。过渡态由同步渡越引导的拟牛顿法确定,使用反应物和产物,并通过本征反应坐标(IRC)进行验证。从IRC计算中,我们观察到Fe~(V)═O部分受到水的攻击,并通过与双氧杂合物的氧原子的氢键相互作用来辅助。氢原子通过过渡态转移到双氧基络合物的氧原子,随后,氢氧化物转移到双氧基络合物的另一个氧原子,从而形成氧-氧键。这项工作还解释了水分子对氧-氧键形成的影响。我们的结果还表明,超氧化物的形成在O_2的进化中起着至关重要的作用。我们用势能扫描法计算了析氧步骤中的过渡态。在目前的工作中,我们研究了氯对氧-氧键形成的影响。在这项研究中,研究了每一步的氧化态、自旋密度和自旋多重性的变化。除了这些静态理论计算外,我们还利用第一性原理分子动力学,借助于良好的亚动力学取样技术,研究了氧-氧键的形成。从亚动力学模拟中对自由能表面的观察可以看出,与质子转移相比,氢氧化物转移具有更小的自由能反应。这一完整的机理研究可能为设计合适的水氧化催化剂提供思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号