首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Electronic Structure and Vibrational Signatures of the Delocalized Radical in Hydrated Clusters of Copper('II') Hydroxide CuOH+(H2O)(0-2)
【24h】

Electronic Structure and Vibrational Signatures of the Delocalized Radical in Hydrated Clusters of Copper('II') Hydroxide CuOH+(H2O)(0-2)

机译:铜(“II”)氢氧化物CuOH +(H2O)中的氯化簇中的电子结构和振动签名(“II”)(0-2)

获取原文
获取原文并翻译 | 示例
           

摘要

The copper hydroxide ion, CuOH+, serves as the catalytic core in several recently developed water-splitting catalysts, and an understanding of its chemistry is critical to determining viable catalytic mechanisms. In spite of its importance, the electronic structure of this open-shell ion has remained ambiguous in the literature. In particular, computed values for both the thermodynamics of hydration and the vibrational signatures of the mono- and dihydrates have shown prohibitively large errors compared to values from recent experimental measurements. In this work, the source of this discrepancy is demonstrated to be the propensity of this ion to exist between traditional Cu(I) and Cu(II) oxidation-state limits. The spin density of the radical is accordingly shown to delocalize between the metal center and surrounding ligands, and increasing the hydration serves to exacerbate this behavior. Equation-of-motion coupled-cluster methods demonstrated the requisite accuracy to resolve the thermodynamic discrepancies. Such methods were also needed for spectral simulations, although the latter also required a direct simulation of the role of the deuterium "tag" molecules that are used in modern predissociation spectroscopy experiments. This nominally benign tag molecule underwent direct complexation with the open-valence metal ion, thereby forming a species akin to known metal-H-2 complexes and strongly impacting the resulting spectrum. Thermal populations of this configuration and other more traditional noncovalently bound isomers led to a considerable broadening of the spectral lineshapes. Therefore, at least for the CuOH+(H2O)(0-2) hydrates, these benchmark ions should be considered to be delocalized radical systems with some degree of multireference character at equilibrium. They also serve as a cautionary tale for the spectroscopy community, wherein the role of the D-2 tag is far from benign.
机译:氢氧化铜离子CuOH+是最近开发的几种水裂解催化剂的催化核心,了解其化学性质对于确定可行的催化机理至关重要。尽管它很重要,但这种开壳离子的电子结构在文献中仍然模糊不清。特别是,与最近的实验测量值相比,单水合物和双水合物的水化热力学和振动特征的计算值显示出了令人望而却步的大误差。在这项工作中,这种差异的来源被证明是这种离子倾向于存在于传统的Cu(I)和Cu(II)氧化态极限之间。相应地,自由基的自旋密度显示出金属中心和周围配体之间的离域性,增加水合作用有助于加剧这种行为。运动方程耦合簇方法证明了解决热力学差异所需的精度。光谱模拟也需要这种方法,尽管后者也需要直接模拟现代预离解光谱实验中使用的氘“标记”分子的作用。这种名义上良性的标记分子与开放价金属离子直接络合,从而形成一种类似于已知金属-H-2络合物的物种,并强烈影响产生的光谱。这种构型和其他更传统的非共价键合异构体的热布居导致光谱线型显著加宽。因此,至少对于CuOH+(H2O)(0-2)水合物,这些基准离子应被视为在平衡时具有一定程度的多参考性质的离域自由基系统。它们也为光谱学界提供了警示,其中D-2标签的作用远不是良性的。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号