...
首页> 外文期刊>Catalysis science & technology >Bifunctional PDDA-stabilized β-Fe2O3 nanoclusters for improved photoelectrocatalytic and magnetic field enhanced photocatalytic applications
【24h】

Bifunctional PDDA-stabilized β-Fe2O3 nanoclusters for improved photoelectrocatalytic and magnetic field enhanced photocatalytic applications

机译:双功能PDDA稳定的β-FE2O3纳米簇,用于改善光电催化和磁场增强的光催化应用

获取原文
获取原文并翻译 | 示例
           

摘要

Photocatalytic water splitting for hydrogen production and water pollutant degradation is a frontier topic to solve energy and environmental problems. In particular, applying electric and magnetic fields on photocatalysts is the most promising solution to improve their catalytic activity. In this work, bifunctional catalyst PDDA-coated β-Fe2O3 nanoclusters (β-Fe2O3@PDDA) have been successfully synthesized by a simple one-pot method at 200 °C. β-Fe2O3@PDDA exhibits excellent photoelectrocatalytic (PEC) activity for the oxygen evolution reaction (OER) with an overpotential of 300 mV, Tafel slope of 45 mV dec−1 and good catalytic stability. Moreover, β-Fe2O3@PDDA exhibited a good magnetic field-enhanced photocatalytic (MF-PC) RhB degradation activity under artificial simulated sunlight; the photocatalytic efficiency can be improved by 44% under an external magnetic field than that without a magnetic field. The surface PDDA-coated β-Fe2O3 can be stably dispersed in water for more than 10 days without agglomeration, which is of great significance for the MF-PC degradation of water pollutants in practical applications. The high catalytic activity for MF-PC is attributed to the magnetic field-suppressed electron–hole recombination and the spin-polarized properties of β-Fe2O3 in photocatalysis. Our study provides a new strategy for the preparation of highly dispersed β-Fe2O3 nanoclusters under mild conditions and the development of ultrastable organic/inorganic composite photocatalysts. This opens up a new avenue for developing electric and magnetic field-enhanced photocatalysts for use in clean energy and environmental control.
机译:用于氢生产和水污染物降解的光催化水分裂是解决能源和环境问题的边界主题。特别是,在光催化剂上应用电场和磁场是改善其催化活性的最有前途的解决方案。在这项工作中,双功能催化剂PDDA涂层的β-FE2O3纳米群(β-FE2O3@pDDA)已通过200°C的简单单锅方法成功合成。 β-FE2O3@PDDA具有出色的光电催化(PEC)活性,用于氧气演化反应(OER),其过电位为300 mV,TAFEL斜率为45 mV dec-1和良好的催化稳定性。此外,β-FE2O3@PDDA在人工模拟的阳光下表现出良好的磁场增强光催化(MF-PC)RHB降解活性。在外部磁场下,光催化效率可以提高44%,而没有磁场。表面PDDA涂层的β-FE2O3可以稳定地分散在水中10天以上,而无需集聚,这对于实际应用中水污染物的MF-PC降解至关重要。 MF-PC的高催化活性归因于磁场抑制的电子 - 孔重组和光催化中β-FE2O3的自旋偏振特性。我们的研究为在温和条件下制备高度分散的β-FE2O3纳米群体和超强有机/无机复合材料光催化剂的发展提供了新的策略。这为开发用于清洁能源和环境控制的电场增强光催化剂的新途径开辟了新的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号