...
首页> 外文期刊>Catalysis science & technology >Catalytic reduction of NO by CO on Rh-4(+) clusters: a density functional theory study
【24h】

Catalytic reduction of NO by CO on Rh-4(+) clusters: a density functional theory study

机译:CO在RH-4(+)簇上的NO催化降低:密度功能理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

An extensive study was conducted to explore the catalytic reduction of NO by CO on Rh-4(+) clusters at the ground and first excited states at the B3LYP/6-311+G(2d), SDD level. The main reaction pathway includes the following elementary steps: (1) the coadsorption of NO and CO; (2) the recombination of NO and CO molecules to form CO2 molecules and N atoms, or the decomposition of NO to N and O atoms; (3) the reaction of the N atom with the second adsorbed NO to form N2O; (4) the decomposition of N2O to N-2 molecules and O atoms; and (5) the recombination of O atoms and CO to form CO2. At low temperatures (300-760 K), the turnover frequency (TOF)-determining transition state (TDTS) is the simultaneous C-O bond formation and N-O bond cleavage, with a rate constant (s(-1)) of k(Ps) = 4.913 x 10(12) exp(-272 724/RT). The formation of CO2 should originate in half from the reaction between the adsorbed CO and NO. The presence of CO in some degree decreases the catalytic reduction temperature of NO on the Rh-4(+) clusters. At high temperatures (760-900 K), the TDTS is applied to the N-O bond cleavage, with a rate constant (s(-1)) of k(Pa) = 6.721 x 10(15) exp(-318 376/RT). The formation of CO2 should stem solely from the surface reaction between the adsorbed CO and the O atom, the latter originating from NO decomposition. The bridge NbRh4+ is thermodynamically preferred. Once the bridge NbRh4+ is formed, N2O- and NCO-contained species are predicted to exist, which is in good agreement with the experimental results.
机译:进行了一项广泛的研究,以探索CO在地面上的RH-4(+)簇上的NO催化减少,并在B3LYP/6-311+G(2D),SDD水平的B3LYP/6-311+G(2D)上进行了激发态。主要反应途径包括以下基本步骤:(1)NO和CO的共吸附; (2)NO和CO分子的重组形成二氧化碳分子和N原子,或NO对N和O原子的分解; (3)n原子与第二个吸附的反应,形成n2o; (4)N2O对N-2分子和O原子的分解; (5)O原子和CO的重组形成CO2。在低温(300-760 K)下,周转频率(TOF)确定过渡态(TDTS)是同时的C-O键形成和N-O键裂解,速率常数(S(-1))的k(ps)(s(-1)) = 4.913 x 10(12)exp(-272 724/rt)。二氧化碳的形成应源于吸附CO和NO之间的反应的一半。在某种程度上,CO的存在降低了RH-4(+)簇上NO的催化还原温度。在高温(760-900 K)下,将TDTS应用于N-O键裂解,k(pa)的速率常数(s(-1))= 6.721 x 10(15)exp(-318 376/rt) )。二氧化碳的形成应仅来自吸附CO和O原子之间的表面反应,后者源自无分解。桥NBRH4+是热力学优选的。一旦形成了NBRH4+桥,预计存在N2O和NCO的物种,这与实验结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号