首页> 外文期刊>Catalysis science & technology >Influence of spin state and electron configuration on the active site and mechanism for catalytic hydrogenation on metal cation catalysts supported on NU-1000: insights from experiments and microkinetic modeling
【24h】

Influence of spin state and electron configuration on the active site and mechanism for catalytic hydrogenation on metal cation catalysts supported on NU-1000: insights from experiments and microkinetic modeling

机译:自旋状态,电子构型的影响催化活性部位和机制加氢在金属阳离子催化剂支持ν- 1000:从实验和见解microkinetic建模

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanism of ethene hydrogenation to ethane on six dicationic 3d transition metal catalysts is investigated. Specifically, a combination of density functional theory (DFT), microkinetic modeling, and high throughput reactor experiments is used to interrogate the active sites and mechanisms for Mn@NU-1000, Fe@NU-1000, Co@NU-1000, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000 catalysts, where NU-1000 is a metal-organic framework (MOF) capable of supporting metal cation catalysts. The combination of experiments and simulations suggests that the reaction mechanism is influenced by the electron configuration and spin state of the metal cations as well as the amount of hydrogen that is adsorbed. Specifically, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000, which have more electrons in their d shells and operate in lower spin states, utilize a metal hydride active site and follow a mechanism where the metal cation binds with one or more species at all steps, whereas Mn@NU-1000, Fe@NU-1000, and Co@NU-1000, which have fewer electrons in their d shells and operate in higher spin states, utilize a bare metal cation active site and follow a mechanism where the number of species that bind to the metal cation is minimized. Instead of binding with the metal cation, catalytic species bind with oxo ligands from the NU-1000 support, as this enables more facile H-2 adsorption. The results reveal opportunities for tuning activity and selectivity for hydrogenation on metal cation catalysts by tuning the properties that influence hydrogen content and spin, including the metal cations themselves, the ligands, the binding environments and supports, and/or the gas phase partial pressures.
机译:乙烯加氢机制乙烷六dicationic三维过渡金属催化剂调查。密度泛函理论(DFT), microkinetic建模和高吞吐量的反应堆实验用于询问活动网站和fe@nu mn@nu机制- 1000 - 1000,cu@nu ni@nu co@nu - 1000 - 1000 - 1000zn@nu - 1000催化剂,ν- 1000是一个有机框架(MOF)的能力支持金属阳离子催化剂。结合实验和模拟表明,反应机理受到电子构型和旋转状态的金属阳离子以及数量氢的吸附。有更多的电子在d贝壳和操作在低自旋态,利用金属氢化物活性部位和遵循的机制金属阳离子结合一个或更多的物种所有步骤,而mn@nu - 1000, fe@nu - 1000,co@nu - 1000,有更少的电子在d贝壳和在高自旋态,利用裸露的金属阳离子活性部位和遵循物种的数量,绑定机制金属阳离子的最小化。绑定与金属阳离子催化物种结合含氧的配体的ν- 1000支持,这使得更容易,氢吸附。结果显示优化活动的机会和选择性加氢的金属阳离子催化剂通过调优影响的属性氢含量和旋转,包括金属阳离子,配体,绑定环境和支持,和/或气相部分压力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号