...
首页> 外文期刊>Catalysis science & technology >Effects of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1,2-propandiol
【24h】

Effects of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1,2-propandiol

机译:MoO3-SnO2 MoO3晶体结构的影响在醇的选择性氧化催化剂二甲醚,2-propandiol

获取原文
获取原文并翻译 | 示例
           

摘要

To improve the selectivity of 1,2-propandiol (PDO) by modifying the structure and morphology of the MoO3/SnO2 catalyst, orthorhombic (alpha), monoclinic (beta) and hexagonal (h) MoO3 crystalline phases were prepared to investigate the rational design requirements of the MoO3-SnO2 structure that are beneficial for the reaction of glycol dimethyl ether (DMET) to PDO. With an increase in the reaction temperature, the highest PDO selectivity of the oxidation reaction of glycol dimethyl ether to 1,2-propandiol was always obtained over the h-MoO3-SnO2 catalyst and the lowest PDO selectivity was always obtained over the beta-MoO3-SnO2 catalyst. The MoO3 bulk structure, the interaction between SnO2 and MoO3 and the surface properties of these three catalysts could account for this distinctive difference. Hexagonal MoO3 is dispersed more homogeneously over the h-MoO3-SnO2 catalyst due to the hexagonal crystalline tunnel structure existing in the h-MoO3-SnO2 catalyst, and the weak interaction between MoO3 and SnO2; besides, the more hydrated surface of the h-MoO3-SnO2 catalyst can lead to more Bronsted acid sites being present on the catalyst surface and favor the dissociation of the C-O bond in DMET and association of the C-C bond to form PDO with the assistance of the redox and basic sites, which can explain why the highest PDO was obtained over the h-MoO3-SnO2 catalyst. The lattice strain and oxygen vacancies in the beta-MoO3-SnO2 catalyst, induced by the substitution of Sn4+ ions with the smaller sized Mo6+ ions, enhance the oxidation ability of the beta-MoO3-SnO2 catalyst, and consequently more CH3O center dot can be formed and transformed to formaldehyde (FA) and methyl formate (MF), which can explain why the total selectivity of FA and MF was highest while the selectivity of PDO was lowest over the beta-MoO3-SnO2 catalyst at the same time. These findings are pretty significant for further investigation of the rational design of the MoO3-SnO2 catalyst structure, applied to the conversion of DMET to PDO.
机译:提高选择性,2-propandiol (PDO)通过修改的结构和形态MoO3 / SnO2催化剂,斜方晶系的(α),单斜(β)和六角MoO3 (h)水晶阶段准备调查rational MoO3-SnO2的设计要求结构,反应的是有益的乙二醇二甲醚(DMET) PDO。提高反应温度、最高PDO的选择性氧化反应乙二醇二甲醚,2-propandiol总是h-MoO3-SnO2催化剂和获得PDO选择性总是获得最低在beta-MoO3-SnO2催化剂。结构,SnO2和MoO3之间的交互和这三个的表面性质可以解释这一独特的催化剂的区别。h-MoO3-SnO2催化剂由于均匀六边形的水晶隧道结构h-MoO3-SnO2催化剂存在的,MoO3和SnO2之间的弱相互作用;水化h-MoO3-SnO2表面催化剂可以导致更多的布仑斯惕酸网站存在催化剂表面和支持债券在DMET和切断的离解碳碳键形成PDO的协会援助的氧化还原和基本的网站,可以解释为什么PDO是获得最高h-MoO3-SnO2催化剂。氧空位的beta-MoO3-SnO2催化剂,诱导Sn4 +离子的置换小尺寸的Mo6 +离子,提高氧化beta-MoO3-SnO2催化剂的能力,因此更CH3O点可以形成中心和转化为甲醛(FA)和甲基甲酸(MF),这可以解释为什么选择性的FA和MF是最高的选择性PDO是最低的beta-MoO3-SnO2催化剂在同一时间。进一步发现是非常重要的调查的设计合理MoO3-SnO2催化剂结构,应用到转换DMET PDO。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号