首页> 外文期刊>Nanoscale >Moldable biomimetic nanoscale optoelectronic platforms for simultaneous enhancement in optical absorption and charge transport
【24h】

Moldable biomimetic nanoscale optoelectronic platforms for simultaneous enhancement in optical absorption and charge transport

机译:可塑造的仿生纳米光电子在光学平台同步增强吸收和电荷传输

获取原文
获取原文并翻译 | 示例
           

摘要

Nano-scale patterns such as those found on the exterior surface of the eyes of certain nocturnal insects have far-reaching implications in terms of optoelectronic device design. The advantage of using these patterns for optoelectronic enhancement in photovoltaic light harvesting has been less explored due to the lack of suitable engineered materials to easily fabricate such nanostructures. Here, an attempt is made to realize these complex patterns using a self-assembly based molding process on hitherto unexplored robust structural epoxies with excellent repeatability and scalability to a larger area. The incorporation of these patterns in the substrate shows nearly a 50 broadband drop in the specular reflectance of the nanostructured substrate. Furthermore, it is demonstrated that by tweaking the bio-inspired patterns on the interior side of a light harvesting device, it is possible to obtain a broadband improvement in the external quantum efficiency in the spectral window between 350 and 650 nm leading to a significant improvement of up to 49 in the photocurrent density in the structured devices. From our experiment and simulations, it is observed that this enhancement stems from a combination of two effects: first, a broadband drop in the specular reflectance exceeding 70, arising from trapped surface plasmon-polariton modes, and second, an improved charge separation in the structured device arising due to perturbed built-in electric fields. Furthermore, the simulations which take into account the interfacial nano-scale morphology show that for absorbers with low carrier mobilities, a significant improvement in the photocurrent and in the fill factor is simultaneously possible. Overall, this work demonstrates a combination of tweaked bio-mimetic design and the use of unconventional robust structural materials as nanostructured opto-electronic substrates. This effort can bridge the gap between naturally evolved designs and practical opto-electronics to enhance the performance.
机译:如发现纳米级模式外表面某些夜间的眼睛昆虫方面产生深远影响光电设备的设计。对光电使用这些模式增强在光伏光收获探索由于缺少合适的工程材料很容易制造纳米结构。意识到这些复杂的模式使用自组装成型过程基于迄今为止未开发健壮的结构环氧树脂优秀的可重复性和可伸缩性更大的面积。底物显示近50%的宽带镜面反射的下降纳米基质。表明,通过调整仿生模式在室内的光线收集装置,可以获得一个宽带改善外部量子在350年和效率光谱窗口650纳米的显著改善光电流密度的49%结构化的设备。模拟,观察到此增强功能源于两个的组合效应:首先,宽带镜面反射超过70%,因被困的表面plasmon-polariton模式,其次,提出了一种改进电荷分离的结构装置由于产生摄动内置电字段。考虑到界面纳米形态表明,较低的吸收器载体的机动性,显著改善光电流和填充因子同时成为可能。演示了一个调整仿生的组合设计和使用非传统的健壮结构材料作为纳米光电基质。之间的桥梁自然进化设计和实际光电提高表演

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号