...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Exploring the Predictability of the High‐Energy Tail of MEE Precipitation Based on Solar Wind Properties
【24h】

Exploring the Predictability of the High‐Energy Tail of MEE Precipitation Based on Solar Wind Properties

机译:Exploring the Predictability of the High‐Energy Tail of MEE Precipitation Based on Solar Wind Properties

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Medium Energy Electron (MEE) precipitation (≳30 keV) ionizes the mesosphere and initiates chemical reactions, which ultimately can reduce mesospheric and stratospheric ozone. Currently, there are considerable differences in how existing parameterizations represent flux response, timing, and duration of MEE precipitation, especially considering its high‐energy tail (≳300 keV). This study compares the nature of ≳300 to ≳30 keV electron fluxes to better understand differences within MEE precipitation. The MEE fluxes are estimated from measurements by the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) from 2004 to 2014. The fluxes are explored in the context of solar wind drivers: corotating high‐speed solar wind streams (HSSs) and coronal mass ejections (CMEs) alongside their associated solar wind properties. Three key aspects of ≳300 keV electron fluxes are investigated: maximum response, peak timing, and duration. The results reveal a structure‐dependent correlation (0.89) between the peak fluxes of ≳30 and ≳300 keV electrons. The epsilon coupling function correlates well (0.84) with the ≳300 keV peak flux, independent of solar wind structure. The ≳300 keV flux peaks 0–3 days after the ≳30 keV flux peaks. The highest probability (∼42%) occurs for a 1‐day delay, while predictive capabilities increase when accounting for solar wind speed. The ≳300 keV flux response has the highest probability of lasting 4 days for both CMEs and HSSs. The results form a base for a stochastic MEE parameterization that goes beyond the average picture, enabling realistic flux variability on both daily and decadal scales.
机译:抽象中能电子(梅伊)降水(≳30 keV)电离中间层和启动的化学反应最终可以减少中间层,平流层的臭氧。在现有的相当大的差异参数化表示通量响应,梅伊降水时机,和持续时间,特别是考虑到其高能源的尾巴(≳300 keV)。≳≳30 300 keV电子通量更好理解在梅伊降水差异。梅伊通量估计的测量中能量质子和电子探测器(mep)在极地轨道环境卫星(po)从2004年到2014年。探索在太阳风中吗司机:共转高速太阳风流(嘶嘶)和日冕物质抛射(cme)太阳风与它们相关的属性。≳300 keV电子通量的三个关键方面调查:最大响应、峰值时间和持续时间。地理结构之间的相关性(0.89)的依赖的峰值流量≳30和300 keV≳电子。ε耦合函数相关(0.84)≳300 keV高峰流量,独立太阳风的结构。0 - 3天后≳30 keV通量峰值。(∼42%)发生概率最高的1天延迟,提高预测能力当占太阳风速度。≳300 keV通量响应最高cme和概率持续4天嘶嘶。梅伊参数超出平均水平图片,使现实的通量变化每天和年代际尺度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号