...
首页> 外文期刊>Coordination chemistry reviews >Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications
【24h】

Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications

机译:Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic nanoparticles (MNPs) possess outstanding rapid magnetic separation ability due to their excellent superparamagnetism and stability. Covalent organic frameworks (COFs) have the advantages of porous structure, large specific surface area, remarkable acid-base and thermal stability that can form novel magnetic nanocomposites with MNPs. The formed magnetic covalent organic frameworks (MCOFs) composite material owns high saturation magnetization and prominent chemical stability, which is the great potential material in the fields of environmental remediation and biological applications. Based on the current research results, firstly, this review further simplifies the classification according to the composition and functionalization of the composite: primitive MCOFs, functionalized MCOFs, composite of Fe/Co/Ni and its alloys with COFs. Secondly, several major characteristics and diverse synthesis methods of MCOFs composites are described. Thirdly, the applications of MCOFs in adsorption and enrichment detection, catalysis, sensing and biomedical aspect are reviewed in detail, and the mechanisms of these processes have been fully and reasonably explained. Finally, the future development and challenges of MCOFs composite materials have been prospected. This work aims to provide a theoretical basis for the synthesis and design of MCOFs composite materials in the future. (C) 2021 Elsevier B.V. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号