...
首页> 外文期刊>Heat Transfer Engineering >Experimental and Numerical Investigation on Forced Convection in Circular Tubes With Nanofluids
【24h】

Experimental and Numerical Investigation on Forced Convection in Circular Tubes With Nanofluids

机译:Experimental and Numerical Investigation on Forced Convection in Circular Tubes With Nanofluids

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper an experimental and numerical study to investigate the convective heat transfer characteristics of fully developed turbulent flow of a water-Al2O3 nanofluid in a circular tube is presented. The numerical simulations are accomplished on the experimental test section configuration. In the analysis, the fluid flow and the thermal field are assumed axial-symmetric, two-dimensional, and steady state. The single-phase model is employed to model the nanofluid mixture and the k-E model is used to describe the turbulent fluid flow. Experimental and numerical results are carried out for different volumetric flow rates and nanoparticles concentration values. Heat transfer convective coefficients as a function of flow rates and Reynolds numbers are presented. The results indicate that the heat transfer coefficients increase for all nanofluids concentrations compared to pure water at increasing volumetric flow rate. Heat transfer coefficient increases are observed at assigned volumetric flow rate for nanofluid mixture with higher concentrations, whereas Nusselt numbers present lower values than the ones for pure water.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号