...
首页> 外文期刊>Parasitology >Schistosomiasis then and now: what has changed in the last 100 years?
【24h】

Schistosomiasis then and now: what has changed in the last 100 years?

机译:Schistosomiasis then and now: what has changed in the last 100 years?

获取原文
获取原文并翻译 | 示例
           

摘要

Only with the completion of the life cycles of Fasciola hepatica in 1883 and 30 years later those of Schistosoma japonicum (1913), Schistosoma haematobium and Schistosoma mansoni (1915) did research on schistosomiasis really get underway. One of the first papers by Cawston in 1918, describing attempts to establish the means of transmission of S. haematobium in Natal, South Africa, forms the historical perspective against which to judge where we are now. Molecular biology techniques have produced a much better definition of the complexity of the schistosome species and their snail hosts, but also revealed the extent of hybridization between human and animal schistosomes that may impact on parasite adaptability. While diagnostics have greatly improved, the ability to detect single worm pair infections routinely, still falls short of its goal. The introduction of praziquantel ~1982 has revolutionized the treatment of infected individuals and led directly to the mass drug administration programmes. In turn, the severe pathological consequences of high worm burdens have been minimized, and for S. haematobium infections the incidence of associated squamous cell carcinoma has been reduced. In comparison, the development of effective vaccines has yet to come to fruition. The elimination of schistosomiasis japonica from Japan shows what is possible, using multiple lines of approach, but the clear and present danger is that the whole edifice of schistosome control is balanced on the monotherapy of praziquantel, and the development of drug resistance could topple that.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号