首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Application of MGGP, ANN, MHBMO, GRG, and Linear Regression for Developing Daily Sediment Rating Curves
【24h】

Application of MGGP, ANN, MHBMO, GRG, and Linear Regression for Developing Daily Sediment Rating Curves

机译:Application of MGGP, ANN, MHBMO, GRG, and Linear Regression for Developing Daily Sediment Rating Curves

获取原文
获取原文并翻译 | 示例
           

摘要

A data-driven relationship between sediment and discharge of a river is among the most erratic relationships in river engineering due to the existence of an inevitable scatter in sediment rating curves. Recently, Multigene Genetic Programming (MGGP), as a machine learning (ML) method, has been proposed to develop data-driven models for various phenomena in the field of hydrology and water resource engineering. The present study explores the capability of MGGP-based models to develop daily sediment ratings of two gauging sites with 30-year sediment-discharge data, which was utilized previously in the literature. The results obtained by MGGP were compared with those achieved by an empirical model and Artificial Neural Network (ANN). The coefficients of the empirical model were calibrated using linear and nonlinear regression models (Generalized Reduced Gradient (GRG) and the Modified Honey Bee Mating Optimization (MHBMO) algorithm). According to the comparative analysis, the mean absolute error (MAE) at the two gauging stations reduced from 516.54 to 519.23 obtained by nonlinear regression to 447.26 and 504.23 achieved by MGGP, respectively. Similarly, all other performance indices indicated the suitability and accuracy of MGGP in developing sediment ratings. Therefore, it was demonstrated that ML-based models, particularly MGGP-based models, outperformed the empirical models for estimating sediment loads.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号