首页> 外文期刊>Composite structures >Testing and simulation of a composite-aluminium wingbox subcomponent subjected to thermal loading
【24h】

Testing and simulation of a composite-aluminium wingbox subcomponent subjected to thermal loading

机译:Testing and simulation of a composite-aluminium wingbox subcomponent subjected to thermal loading

获取原文
获取原文并翻译 | 示例
           

摘要

Modern aircraft designs combine carbon-aluminium assemblies mechanically joined by steel bolts. The different thermal expansion coefficient of these materials and the substantial temperature excursions during aircraft operation, lead to thermal stresses that alter the load distribution of the bolted joint. These stresses can compromise the structural integrity of large components and they are difficult to anticipate. In this paper, we present a detailed experimental and computational study of a hybrid carbon-aluminium wingbox subcomponent. Thermal tests were performed to determine the global deformation of the assembly. The numerical model is compared against the experiments and is used to extract additional information that cannot be easily measured experimentally, for instance the evolution of the bolt preload with temperature. The agreement between the experimental results and simulation instils confidence in the proposed methodology to identify, and minimise through redesign, areas prone to damage due to the combination of thermal and mechanical loads.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号